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The direction of arrival (DoA) estimation problem
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Assumptions

Under the standard assumptions, the snapshot y(t) ∈ CM at time t ∈ [T ]
can be modeled as

y(t) =
k∑

i=1

si (t)a(θi ) + n(t) = A(θ)s(t) + n(t), n(t) ∼ CN (0, ηIM) (1)

where a(θ) : [0, π] → CM is the array manifold of the M-element uniform
linear array (ULA) whose i-th element is given by

[a(θ)]i = e
j2π

(
i−1− (M−1)

2

)
d
λ cos θ

, i ∈ [M] (2)

and A(θ) =
[
a(θ1) a(θ2) · · · a(θk)

]
. The k signals have equal powers.

Given {y(t)}Tt=1 and k ∈ [M − 1], how to find θ1, θ2, · · · , θk?
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Background

DoAs θ1, θ2, · · · , θk can be found by subspace methods such as MUtiple SIgnal
Classification (MUSIC) (Schmidt, 1986) and root-MUSIC (Barabell, 1983; Rao
and Hari, 1989).

Estimate the SCM R̂0 from R̂ = 1
T

∑T
t=1 y(t)y

H(t).

Find the signal subspace Es or noise subspace En via eigenvalue
decomposition

R̂0 =
[
Es En

] [Λk

ΛM−k

][
EH
s

EH
n

]
. (3)

MUSIC. Find all the peaks of

1

aH(θ)EnEH
n a(θ)

. (4)

Root-MUSIC. Find the roots of

vHEnE
H
n v = 0 (5)

where v =
[
1 z1 z2 · · · z (M−1)

]T
.

An M-element ULA can find M − 1 sources.
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Sparse linear arrays (SLAs)

Let N ≤ M and S = {s1, s2, · · · , sN} ⊂ [M]. Consider
minimum redundancy arrays (MRAs) or nested arrays.a

The snapshot received on this physical array is

yS(t) = Γy(t). (6)

where Γ ∈ RN×M is a row selection matrix given by

[Γ]nm =

{
1, if sn = m,

0, otherwise,
, n ∈ [N],m ∈ [M]. (7)

The noiseless SCM of the SLA/MRA is

RS = ΓR0Γ
T. (8)

Define R̂S = 1
T

∑T
t=1 yS(t)y

H
S(t).

aPal, Piya, and Palghat P. Vaidyanathan. “Nested arrays: A novel
approach to array processing with enhanced degrees of freedom.” IEEE
Transactions on Signal Processing 58, no. 8 (2010).
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Background

R0 = Toep



r(0)
r(1)
...

r(M)


 =


r(0) r(1) · · · r(M)
r∗(1) r(0) · · · r(M − 1)
...

...
. . .

...
r∗(M) r∗(M − 1) · · · r(0)

 . (9)

R0 of the M-element ULA can be reconstructed from RS of the N-element
MRA. For example, for M = 10 and N = 5,

r(0) r(2) r(5) r(8) r(9)
r∗(2) r(0) r(3) r(6) r(7)
r∗(5) r∗(3) r(0) r(3) r(4)
r∗(8) r∗(6) r∗(3) r(0) r(1)
r∗(9) r∗(7) r∗(4) r∗(1) r(0)

 . (10)

Redundancy averaging and direct augmentation.1

1Pillai, S. Unnikrishna, Yeheskel Bar-Ness, and Fred Haber. “A new approach to array
geometry for improved spatial spectrum estimation.” Proceedings of the IEEE 73, no. 10 (1985).
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The maximum likelihood problem

R0 + ηIM is positive semidefinite and possibly Toeplitz.

yS(t) ∼ CN (0,RS + ηIN).

One can formulate the following constrained optimization problem according
to the maximum likelihood principle:

min
v∈CM

log det
(
ΓToep(v)ΓT

)
+ tr

((
ΓToep(v)ΓT

)−1

R̂S

)
subject to Toep(v) ⪰ 0.

(11)

Convex relaxation and majorization-minimization:

SPA (Yang et al., 2014), Wasserstein distance minimization (Wang et al.,
2019), StructCovMLE (Pote and Rao, 2023), etc
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The sparse and parametric approach (SPA)

Based on the covariance fitting criterion (Stoica et al., 2010)2, Yang et al. (2014)3

formulated the SPA which involves the following problem:

min
X∈HN ,v∈CM

tr (X) + tr
(
R̂−1

S ΓToep(v)ΓT
)

subject to

 X R̂
1
2

S

R̂
1
2

S ΓToep(v)ΓT

Toep(v)

 ⪰ 0.
(12)

2Stoica, Petre, Prabhu Babu, and Jian Li. “New method of sparse parameter estimation in
separable models and its use for spectral analysis of irregularly sampled data.” IEEE
Transactions on Signal Processing 59, no. 1 (2010).

3Yang, Zai, Lihua Xie, and Cishen Zhang. “A discretization-free sparse and parametric
approach for linear array signal processing.” IEEE Transactions on Signal Processing 62, no. 19
(2014).
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Majorization-minimization

Because the log det term in (11) is concave, it can be majorized by a supporting
hyperplane. Based on the majorization-minimization principle, Pote and Rao
(2023)4 proposed the “StructCovMLE” approach that solves a sequence of SDP
problems.

Let R(0) = IM .

For i = 0, 1, 2, · · · , R(i+1) = Toep(v∗) where v∗ is found by solving

min
v∈CM ,X∈HN

tr

((
ΓR(i)ΓT

)−1

ΓToep(v)ΓT

)
+ tr

(
XR̂S

)

subject to

X IN
IN ΓToep(v)ΓT

Toep(v)

 ⪰ 0.

(13)

Stop the iteration if the relative change of R(i) and R(i+1) is sufficiently small.

4Pote, Rohan R., and Bhaskar D. Rao. “Maximum likelihood-based gridless DoA estimation
using structured covariance matrix recovery and SBL with grid refinement.” IEEE Transactions
on Signal Processing 71 (2023): 802-815.
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Grid-based approaches using sparse Bayesian learning

Pick G ∈ N and let g be a G -point grid of [0, π].

Define Σ(γ) = A(g)diag(γ)AH(g) + λIM for every γ ∈ RG
+.

Under the standard setting, the following maximum likelihood problem can
be formulated

min
γ∈RG

+

log det
(
ΓΣ(γ)ΓT

)
+ tr

((
ΓΣ(γ)ΓT

)−1

R̂S

)
. (14)

Expectation-maximization algorithms (Wipf and Rao, 2004), Tipping
iterations (Tipping, 2001), etc
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DNN-based covariance matrix reconstruction7

Let D =
{
R̂

(l)
S ,R

(l)
0

}L

l=1
be a dataset. Learn a function

fW : CN×N → CM×M (15)

such that
fW ∗

(
R̂S

)
f HW ∗

(
R̂S

)
≈ R0. (16)

Solve

min
W

1

L

L∑
l=1

d

(
fW

(
R̂

(l)
S

)
f HW

(
R̂

(l)
S

)
,R

(l)
0

)
. (17)

where d : CM×M × CM×M → [0,∞) is a distance. For example,

dFro (E,F) = ∥E− F∥F , (18)

and

dAff (E,F) =

∥∥∥∥log (E− 1
2FE− 1

2

)∥∥∥∥
F

.56 (19)

5Given a matrix B, another matrix A is said to be a matrix logarithm of B if eA = B.
6R

(l)
0 is replaced by R

(l)
0 + δIM .

7Barthelme, Andreas, and Wolfgang Utschick. “DoA estimation using neural network-based
covariance matrix reconstruction.” IEEE Signal Processing Letters 28 (2021).
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Toeplitz prior

Learn a function
fW : CN×N → CM (20)

such that

Toep

(
fW ∗

(
R̂S

))
≈ R0. (21)

The squared loss function

dsqu(u, v) =
1

2M
∥u− v∥22 (22)

can be used to train the DNN models.8

8Wu, Xiaohuan, Xu Yang, Xiaoyuan Jia, and Feng Tian. “A gridless DOA estimation method
based on convolutional neural network with Toeplitz prior.” IEEE Signal Processing Letters 29
(2022): 1247-1251.

Subspace Representation Learning 15 / 40



The invariance issue in covariance matrix fitting

The matrix αR0 should also be a solution for any α > 0 because only the
signal or noise subspace is needed for the root-MUSIC algorithm.

The signal subspace can remain unchanged even though the eigenvalues of
R0 are changed.

However, the above covariance matrix reconstruction methods do not take
this invariance into account.

In fact, covariance matrix reconstruction is a more difficult problem than
reconstructing subspaces.

Question 1
Is it possible for a neural network to learn subspaces of different dimensions?
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Subspace representation learning9

Let D =
{
R̂

(l)
S ,U (l)

}L

l=1
be a dataset. Construct

fW : CN×N × [M − 1] →
M−1⋃
k=1

Gr(k,M) (23)

where Gr(k,M) is the Grassmann manifold or Grassmannian such that

fW ∗

(
R̂S , k

)
≈ U . (24)

Solve

min
W

1

L

L∑
l=1

dk=k(l)

(
fW

(
R̂

(l)
S , k(l)

)
,U (l)

)
(25)

where dk : Gr(k ,M)× Gr(k ,M) → [0,∞) is some distance.

9Chen, Kuan-Lin, and Bhaskar D. Rao. “Subspace Representation Learning for Sparse Linear
Arrays to Localize More Sources than Sensors: A Deep Learning Methodology.” IEEE
Transactions on Signal Processing (2025).
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Loss functions

We propose to construct dk : Gr(k ,M)× Gr(k ,M) → [0,∞) as a function of
the vector of principal angles between two given subspaces.

It is a necessary condition10 if

dk
(
Q · U ,Q · Ũ

)
= dk

(
U , Ũ

)
(26)

for every U , Ũ ∈ Gr(k ,M) and every Q ∈ U(M). The left action of U(M) on
Gr(k,M) in (26) is defined by

Q · U := span (QB) (27)

where the columns of B ∈ CM×k form a basis of U .

10Wong, Yung-Chow. “Differential geometry of Grassmann manifolds.” Proceedings of the
National Academy of Sciences 57, no. 3 (1967): 589-594.
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Principal angles

Let U , Ũ ∈ Gr(k,M) and U ∈ CM×k and Ũ ∈ CM×k be matrices whose
columns form unitary bases of U and Ũ , respectively.

The principal angles ϕk =
[
ϕ1 ϕ2 · · · ϕk

]T
between U and Ũ can be

calculated by11

ϕi

(
U , Ũ

)
= cos−1

(
σi

(
UHŨ

))
(28)

for i ∈ [k] where σ1 ≥ σ2 ≥ · · · ≥ σk are the singular values of UHŨ.

11Björck, Åke, and Gene H. Golub. “Numerical methods for computing angles between linear
subspaces.” Mathematics of computation 27, no. 123 (1973): 579-594.
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Distances

ϕk =


ϕ1

ϕ2

...
ϕk

 . ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕk . (29)

Table 1: Distances between subspaces

Distance Function of principal angles

Geodesic (arc length) ∥ϕk∥2
Fubini-Study cos−1

(∏k
i=1 cosϕi

)
Chordal (projection Frobenius norm)

(∑k
i=1 sin

2 ϕi

) 1
2

Projection 2-norm sinϕk

Chordal Frobenius norm 2
(∑k

i=1 sin
2 ϕi

2

) 1
2

Chordal 2-norm 2 sin ϕk

2
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The geodesic distance

Among them, the most natural choice of dk is the geodesic distance12

dGeo
k

(
U , Ũ

)
=

 k∑
i=1

ϕ2
i

(
U , Ũ

) 1
2

=

∥∥∥∥ϕ(
U , Ũ

)∥∥∥∥
2

(30)

which defines the length of the shortest curve between two points on the
Grassmannian Gr(k ,M).

The geodesic distance of any two points on Gr(k ,M) is bounded by

√
k
π

2
. (31)

12Wong, Yung-Chow. “Differential geometry of Grassmann manifolds.” Proceedings of the
National Academy of Sciences 57, no. 3 (1967): 589-594.
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Is it possible for a neural network to learn subspaces?

Theorem 1 (Chen and Rao (2025))

For every k ∈ [M − 1] and every ϵ > 0, there exists a ReLU network
f : CN×N → Gr(k,M) such that∫

[0,π]k
dGeo
k

(
f (RS) ,PA(θ)

)
dθ < ϵ. (32)

The signal subspace can be generated by evaluating a continuous piecewise
linear function at the SCM.

Proof sketch: continuity of the orthogonal projector{
P ∈ CM×M | PH = P,P2 = P, rank(P) = k

}
(33)

and
∥PU1 − PU2∥F → 0 implies dGeo

k (U1,U2) → 0. (34)
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Bypassing the root-MUSIC algorithm

The earliest end-to-end approach is probably the work by Papageorgiou et al.
(2021).13 It is a grid-based approach.

The MCENet proposed by Barthelme and Utschick (2021b) is a gridless
end-to-end approach. However, it was designed for subarray sampling, not for
more sources than sensors.14

Question 2
Is it possible to bypass the root-MUSIC algorithm and directly output the angle
estimates?

Question 3
Which one is better? The subspace representation or angle representation?

13Papageorgiou, Georgios K., Mathini Sellathurai, and Yonina C. Eldar. “Deep networks for
direction-of-arrival estimation in low SNR.” IEEE Transactions on Signal Processing 69 (2021):
3714-3729.

14Barthelme, Andreas, and Wolfgang Utschick. “A machine learning approach to DoA
estimation and model order selection for antenna arrays with subarray sampling.” IEEE
Transactions on Signal Processing 69 (2021): 3075-3087.
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A new gridless end-to-end approach

R̂S

Architecture

AffineAffineAffine · · · Affine

θ1 θ1, θ2 θ1, θ2, θ3 θ1, θ2, · · · , θM−1

Figure 1: An illustration of the gridless end-to-end model.

We propose to construct a DNN model gW such that

gW : CN×N × [M − 1] → R1 × R2 × · · ·RM−1. (35)

Solve

min
W

1

L

L∑
l=1

dk=k(l)

(
hk ◦ gW

(
R̂

(l)
S , k(l)

)
,θ(l)

)
(36)

where d1, d2, · · · , dM−1 are loss functions of different dimensions that calculate
some minimum distances among all permutations. For example, for k ∈ [M − 1],

dk
(
θ̂,θ

)
=

1

k
min
Π∈Pk

∥∥∥Πθ̂ − θ
∥∥∥2
2
. (37)
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Experimental setup

N = 4, M = 7, S = {1, 2, 5, 7} if not explicitly specified.

T = 50. SNR = 10 log10

(
1
k

∑k
i=1 pi
η

)
.

p1 = p2 = · · · = pk if not explicitly specified.

k ∈ [M − 1].

For any k ∈ [M − 1], the DoAs θ1, θ2, · · · , θk are selected at random in the

range
[
1
6π,

5
6π

]
with a minimum separation constraint mini ̸=j |θi − θj | ≥ 1

45π.
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Evaluation and baselines

Evaluation:

The mean squared error (MSE)

1

Ltest

Ltest∑
l=1

1

k
min
Π∈Pk

∥∥∥Πθ̂l − θl

∥∥∥2
2

(38)

for a source number k ∈ [M − 1] where Ltest = 104 is the total number of
random trials.

Baselines:

Optimization-based approaches

SPA (Yang et al., 2014)
Wasserstein distance based approach (WDA) (Wang et al., 2019)

DNN-based covariance matrix reconstruction (DCR)

DCR-G-Fro and DCR-G-Aff (Barthelme and Utschick, 2021a)
DCR-T (Wu et al., 2022)
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The DNN architecture, dataset, and training procedure

×L

×(L− 1)

×(L− 1)

ReLU

Conv

ReLU

Conv

Block

Input

Conv

Block

+

Block Conv

+

Block

+

Block Conv

+

Block

+

ReLU

AvgPool

Affine

Output

Figure 2: An illustration of a 3-stage L-block ResNet model (He et al., 2016).

Wide ResNet 16-8 (Zagoruyko and Komodakis, 2016) (11M parameters).

For each k ∈ [M − 1], there are 2× 106 and 6× 105 random data points for
training and validation, respectively. mini ̸=j |θi − θj | ≥ 1

60π.

Train 50 epochs with the SGD algorithm and one cycle learning rate
scheduler (Smith and Topin, 2019). The batch size is 4096.

The learning rates for DCR-T, DCR-G-Fro, DCR-G-Aff, and our approach are
0.05, 0.01, 0.005, and 0.1, respectively, found by grid search.
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Superior performance over a wide range of SNRs
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Figure 3: MSE vs. SNR. Only one DNN model is trained for each approach.
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Figure 4: MSE vs. SNR. N = 5. M = 10.
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Performance on unseen numbers of snapshots
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Figure 5: MSE vs. number of snapshots. Only one model is trained at 50 snapshots for
each approach.
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Other distances between subspaces
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Figure 6: Different distances in Table 1 lead to nearly identical performance.
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Random source powers
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Figure 7: Random source powers with maxi pi
minj pj

≤ 10.
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Comparison to the gridless end-to-end approach
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Figure 8: MSE vs. SNR. N = 5. M = 10.

For k ∈ {1, 3, 6}, subspace representation learning outperforms the gridless
end-to-end approach at high SNR regions.

For k = 9, the gridless end-to-end approach is superior.
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The imperfect array model15

The array manifold with sensor position errors is given by aρ(θ) : [0, π] → CM

such that

[aρ(θ)]i = e
j2π

(
i−1− (M−1)

2 +ρei
)

d
λ cos θ

(39)

for i ∈ [M]. The imperfect array manifold ãρ(θ) can be defined as

ãρ(θ) = CρGρHρaρ(θ) (40)

where the gain bias is modeled by

Gρ = I+ ρdiag (g1, g2, · · · , gM) , (41)

the phase bias is modeled by

Hρ = diag
(
e jρh1 , e jρh2 , · · · , e jρhM

)
, (42)

and the intersensor mutual coupling is modeled by

Cρ = I+ ρToep

([
0 γ γ2 · · · γM−1

]T)
. (43)

15Liu, Zhang-Meng, Chenwei Zhang, and S. Yu Philip. “Direction-of-arrival estimation based
on deep neural networks with robustness to array imperfections.” IEEE Transactions on
Antennas and Propagation 66, no. 12 (2018): 7315-7327.
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Robustness to array imperfections

A larger ρ makes the imperfections more severe.
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Figure 9: MSE vs. the array imperfection parameter ρ. Only one model is trained for
each approach.
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Summary

A new construction to learn subspaces of different dimensions

fW : CN×N × [M − 1] →
M−1⋃
k=1

Gr(k ,M). (44)

A DNN model can be trained by distances on
⋃M−1

k=1 Gr(k,M) such as the
geodesic distances ∥∥∥ϕk(U , Ũ)

∥∥∥
2
, k ∈ [M − 1]. (45)

The map between the SCM and the signal subspace can be approximated by
a ReLU network.

A new gridless end-to-end approach is proposed.

Superior performance compared to SDP-based and DNN-based covariance
matrix reconstruction methods.

The method is geometry/imperfection-agnostic.
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