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Abstract

• We propose ResNEsts, i.e., Residual Nonlinear Estimators,
by simply dropping nonlinearities at the last residual repre-
sentation from standard ResNets.

• Wide ResNEsts with bottleneck blocks can always guar-
antee a very desirable training property, i.e., adding more
blocks does not decrease performance.

• We propose DenseNEsts, i.e., Densely connected Nonlin-
ear Estimators and show that their theoretical guarantees
are superior to ones obtained in ResNEsts.

1 ResNEsts and augmented ResNEsts
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Figure 1: A generic vector-valued ResNEst that has a chain of L residual
blocks (or units). Different from the ResNet architecture using pre-activation
residual blocks in the literature [1], our ResNEst architecture drops nonlinear-
ities at xL so as to reveal a linear relationship between the output ŷResNEst and
the features v0,v1, · · · ,vL.

1.1 Dropping nonlinearities and expanding the input space

The proposed ResNEst model employs the following input-
output relationship for the i-th residual block in Figure 1:

xi = xi−1 +WiGi (xi−1;θi) . (1)

The term WiGi is a composition of a nonlinear function Gi and
a linear transformation, which is generally known as a residual
function. Wi ∈ RM×Ki forms a linear transformation and we
consider Gi (xi−1;θi) : RM 7→ RKi as a function implemented
by a neural network with parameters θi for all i ∈ {1, 2, · · · , L}.
We define the expansion x0 = W0x for the input x ∈ RNin to
the ResNEst using a linear transformation with a weight matrix
W0 ∈ RM×K0. The output ŷResNEst ∈ RNo (or ŷL-ResNEst to in-
dicate L blocks) of the ResNEst is defined as ŷL-ResNEst (x) =
WL+1xL where WL+1 ∈ RNo×M .
•M is the expansion factor.
•No is the output dimension of the network.

1.2 Basis function modeling and the coupling problem

Because the ResNEst now reveals a linear relationship between
the output and the features, we have:

ŷL-ResNEst (x) = WL+1

L∑
i=0

Wivi (x) (2)

where

vi (x) = Gi (xi−1;θi) = Gi

 i−1∑
j=0

Wjvj;θi

 . (3)

We propose to utilize the basis function modeling point of view
in the ResNEst and analyze the following ERM problem:

(Pϕ) min
WL,WL+1

R (WL,WL+1;ϕ) (4)

where

R (WL,WL+1;ϕ) =
1

N

N∑
n=1

ℓ
(
ŷϕ
L-ResNEst (x

n) ,yn
)

(5)

for any fixed feature finding weights ϕ.

Remark 1. Since the set of all local minima of (Pϕ) using any
possible features is a superset of the set of all local minima of the
original ERM problem (P), any characterization of (Pϕ) can then
be translated to (P).

Assumption 1.
∑N

n=1 vL (x
n)ynT ̸= 0 and

∑N
n=1 vL (x

n)vL (x
n)T

is full rank.

Proposition 1. If ℓ is the squared loss and Assumption 1 is satis-
fied, then

(a) the objective function of (Pϕ) is non-convex and non-
concave;

(b) every critical point that is not a local minimizer is a saddle
point in (Pϕ).

1.3 Bounding empirical risks via augmentation

To avoid the coupling problem in ResNEsts, an L-block A-
ResNEst introduces another set of parameters {Hi}Li=0 to replace
every bilinear map on each feature in (2) with a linear map:

ŷL-A-ResNEst (x) =
L∑
i=0

Hivi (x) . (6)

Assumption 2. The loss function ℓ(ŷ,y) is differentiable and con-
vex in ŷ for any y.

Proposition 2. Let
(
H∗

0, · · · ,H∗
L

)
be any local minimizer of the

following optimization problem:

(PAϕ) min
H0,··· ,HL

A (H0, · · · ,HL;ϕ) (7)

where A (H0, · · · ,HL;ϕ) =
1
N

∑N
n=1 ℓ

(
ŷϕ
L-A-ResNEst (x

n) ,yn
)

. If
Assumption 2 is satisfied, then the optimization problem in (7) is
convex and

ϵ = R
(
W∗

L,W
∗
L+1;ϕ

)
−A (H∗

0, · · · ,H∗
L;ϕ) ≥ 0 (8)

for any local minimizer
(
W∗

L,W
∗
L+1

)
of (Pϕ) using arbitrary fea-

ture finding parameters ϕ.

1.4 Condition for strictly improved representations

Question 1. What properties are fundamentally required for fea-
tures to strictly improve the representation over blocks?

A fundamental answer is they need to be at least linearly
unpredictable. Note that vi must be linearly unpredictable
by v0, · · · ,vi−1 if A

(
H∗

0,H
∗
1, · · · ,H∗

i−1,0, · · · ,0,ϕ∗) >
A
(
H∗

0,H
∗
1, · · · ,H∗

i ,0, · · · ,0,ϕ∗) for any local minimum(
H∗

0, · · · ,H∗
L,ϕ

∗) in (PA). The residual representation xi is not
strictly improved from the previous representation xi−1 if the fea-
ture vi is linearly predictable by the previous features.
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Figure 2: The proposed augmented ResNEst or A-ResNEst.

2 Wide ResNEsts with bottleneck residual blocks

Assumption 3.M ≥ No.
Assumption 4. The linear inverse problem xL−1 =

∑L−1
i=0 Wivi

has a unique solution.
Theorem 1. If Assumption 2 and 3 are satisfied, then the follow-
ing two properties are true in (Pϕ) under any ϕ such that As-
sumption 4 holds:

(a) every critical point with full rank WL+1 is a global mini-
mizer;

(b) ϵ = 0 for every local minimizer.
Remark 2. Let Assumption 2 and 3 be true. Any local minimizer
of (P) such that Assumption 4 is satisfied guarantees

(a) monotonically improved (no worse) residual representa-
tions over blocks;

(b) every residual representation is better than the input rep-
resentation in the linear prediction sense.

Corollary 1. Let Assumption 2 and 3 be true. Any local min-
imum of (Pα) is smaller than or equal to any local minimum
of (Pβ) under Assumption 4 for any α = {Wi−1,θi}Lα

i=1 and
β = {Wi−1,θi}Lβ

i=1 where Lα and Lβ are positive integers such
that Lα > Lβ.
Corollary 2. Let

(
W∗

0, · · · ,W∗
L+1,θ

∗
1, · · · ,θ∗

L

)
be any local min-

imizer of (P) and ϕ∗ = {W∗
i−1,θ

∗
i}Li=1. If Assumption 2, 3 and 4

are satisfied, then
(a)R

(
W∗

0, · · · ,θ∗
L

)
≤ minA∈RNo×Nin

1
N

∑N
n=1 ℓ (Axn,yn);

(b) the above inequality is strict if A
(
H∗

0,0, · · · ,0,ϕ∗) >
A
(
H∗

0, · · · ,H∗
L,ϕ

∗).
Theorem 2. If ℓ is the squared loss, and Assumption 1 and 3 are
satisfied, then the following two properties are true at every sad-
dle point of (Pϕ) under any ϕ such that Assumption 4 holds:

(a)WL+1 is rank-deficient;
(b) there exists at least one direction with strictly negative

curvature.

3 DenseNEsts are wide ResNEsts with bottleneck
residual blocks equipped with orthogonalities

For an L-block DenseNEst, we define the i-th dense block as a
function RMi−1 7→ RMi of the form

xi = xi−1©Qi (xi−1;θi) (9)

for i = 1, 2, · · · , L where the dense function Qi is a general
nonlinear function; and xi is the output of the i-th dense block.
For all i ∈ {1, 2, · · · , L}, Qi(xi−1;θi) : RMi−1 7→ RDi is a
function implemented by a neural network with parameters θi

where Di = Mi − Mi−1 ≥ 1 with M0 = Nin = D0. The
output of a DenseNEst is defined as ŷDenseNEst = WL+1xL for
WL+1 ∈ RNo×ML.
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Figure 3: A generic vector-valued DenseNEst that has a chain of L dense
blocks (or units). The symbol “©” represents the concatenation operation.

x Q1 Q2 Q3 · · · QL WL+1 ŷDenseNEst

Figure 4: An equivalence to Figure 3 emphasizing the growth of the input
dimension at each block.

The ERM problem (PD) for the DenseNEst is defined on
(WL+1,θ1, · · · ,θL). The DenseNEst ERM problem for any fixed
features, denoted as (PDϕ), is given by

(PDϕ) min
WL+1

D (WL+1;ϕ) (10)

where D (WL+1;ϕ) =
1
N

∑N
n=1 ℓ

(
ŷϕ
L-DenseNEst (x

n) ,yn
)
.

Proposition 3. If Assumption 2 is satisfied, then any local mini-
mum of (PD) is smaller than or equal to the minimum empirical
risk given by any linear predictor of the input.
Proposition 4. Given any DenseNEst ŷL-DenseNEst, there exists a
wide ResNEst with bottleneck residual blocks ŷϕ

L-ResNEst such that
ŷϕ
L-ResNEst(x) = ŷL-DenseNEst(x) for all x ∈ RNin. If , in addition,

Assumption 2 and 3 are satisfied, then ϵ = 0 for every local min-
imizer of (Pϕ).
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