ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

Kuan-Lin Chen¹, Ching-Hua Lee¹, Harinath Garudadri², and Bhaskar D. Rao¹ ¹Department of Electrical and Computer Engineering, ²Qualcomm Institute University of California, San Diego

Abstract

- We propose ResNEsts, i.e., Residual Nonlinear Estimators, by simply dropping nonlinearities at the last residual representation from standard ResNets.
- Wide ResNEsts with bottleneck blocks can always guarantee a very desirable training property, i.e., adding more blocks does not decrease performance.
- We propose DenseNEsts, i.e., Densely connected Nonlinear Estimators and show that their theoretical guarantees are superior to ones obtained in ResNEsts.

1 ResNEsts and augmented ResNEsts

Figure 1: A generic vector-valued ResNEst that has a chain of *L* residual blocks (or units). Different from the ResNet architecture using pre-activation residual blocks in the literature [1], our ResNEst architecture drops nonlinearities at \mathbf{x}_L so as to reveal a linear relationship between the output $\hat{\mathbf{y}}_{\text{ResNEst}}$ and the features $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_L$.

1.1 Dropping nonlinearities and expanding the input space

The proposed ResNEst model employs the following inputoutput relationship for the *i*-th residual block in Figure 1:

$$\mathbf{x}_{i} = \mathbf{x}_{i-1} + \mathbf{W}_{i} \mathbf{G}_{i} \left(\mathbf{x}_{i-1}; \boldsymbol{\theta}_{i} \right).$$
(1)

The term $\mathbf{W}_i \mathbf{G}_i$ is a composition of a nonlinear function \mathbf{G}_i and a linear transformation, which is generally known as a residual function. $\mathbf{W}_i \in \mathbb{R}^{M \times K_i}$ forms a linear transformation and we consider $\mathbf{G}_i(\mathbf{x}_{i-1}; \boldsymbol{\theta}_i) : \mathbb{R}^M \mapsto \mathbb{R}^{K_i}$ as a function implemented by a neural network with parameters $\boldsymbol{\theta}_i$ for all $i \in \{1, 2, \dots, L\}$. We define the expansion $\mathbf{x}_0 = \mathbf{W}_0 \mathbf{x}$ for the input $\mathbf{x} \in \mathbb{R}^{N_{in}}$ to the ResNEst using a linear transformation with a weight matrix $\mathbf{W}_0 \in \mathbb{R}^{M \times K_0}$. The output $\hat{\mathbf{y}}_{\text{ResNEst}} \in \mathbb{R}^{N_o}$ (or $\hat{\mathbf{y}}_{L-\text{ResNEst}}$ to indicate *L* blocks) of the ResNEst is defined as $\hat{\mathbf{y}}_{L-\text{ResNEst}}(\mathbf{x}) =$ $\mathbf{W}_{L+1}\mathbf{x}_L$ where $\mathbf{W}_{L+1} \in \mathbb{R}^{N_o \times M}$.

- M is the expansion factor.
- N_o is the output dimension of the network.

1.2 Basis function modeling and the coupling problem

Because the ResNEst now reveals a linear relationship between the output and the features, we have:

$$\hat{\mathbf{y}}_{L-\text{ResNEst}}(\mathbf{x}) = \mathbf{W}_{L+1} \sum_{i=0}^{L} \mathbf{W}_{i} \mathbf{v}_{i}(\mathbf{x})$$
(2)

where

$$\mathbf{v}_{i}(\mathbf{x}) = \mathbf{G}_{i}(\mathbf{x}_{i-1};\boldsymbol{\theta}_{i}) = \mathbf{G}_{i}\left(\sum_{j=0}^{i-1} \mathbf{W}_{j}\mathbf{v}_{j};\boldsymbol{\theta}_{i}\right).$$
(3)

We propose to utilize the basis function modeling point of view in the ResNEst and analyze the following ERM problem:

$$(\mathbf{P}_{\boldsymbol{\phi}}) \min_{\mathbf{W}_{L},\mathbf{W}_{L+1}} \mathcal{R}(\mathbf{W}_{L},\mathbf{W}_{L+1};\boldsymbol{\phi})$$
(4)

where

$$\mathcal{R}\left(\mathbf{W}_{L}, \mathbf{W}_{L+1}; \boldsymbol{\phi}\right) = \frac{1}{N} \sum_{n=1}^{N} \ell\left(\hat{\mathbf{y}}_{L-\text{ResNEst}}^{\boldsymbol{\phi}}\left(\mathbf{x}^{n}\right), \mathbf{y}^{n}\right)$$
(5)

for any fixed feature finding weights ϕ .

Remark 1. Since the set of all local minima of (P_{ϕ}) using any possible features is a superset of the set of all local minima of the original ERM problem (P), any characterization of (P_{ϕ}) can then be translated to (P).

Assumption 1. $\sum_{n=1}^{N} \mathbf{v}_L(\mathbf{x}^n) \mathbf{y}^{nT} \neq \mathbf{0}$ and $\sum_{n=1}^{N} \mathbf{v}_L(\mathbf{x}^n) \mathbf{v}_L(\mathbf{x}^n)^T$ *is full rank.*

Proposition 1. If ℓ is the squared loss and Assumption 1 is satisfied, then

(a) the objective function of (P_{ϕ}) is non-convex and non-concave;

(b) every critical point that is not a local minimizer is a saddle point in (P_{ϕ}) .

1.3 Bounding empirical risks via augmentation

To avoid the coupling problem in ResNEsts, an *L*-block A-ResNEst introduces another set of parameters $\{\mathbf{H}_i\}_{i=0}^{L}$ to replace every bilinear map on each feature in (2) with a linear map:

$$\hat{\mathbf{y}}_{L-\text{A-ResNEst}}(\mathbf{x}) = \sum_{i=0}^{L} \mathbf{H}_{i} \mathbf{v}_{i}(\mathbf{x}).$$
 (6)

Assumption 2. The loss function $\ell(\hat{\mathbf{y}}, \mathbf{y})$ is differentiable and convex in $\hat{\mathbf{y}}$ for any \mathbf{y} .

Proposition 2. Let $(\mathbf{H}_0^*, \dots, \mathbf{H}_L^*)$ be any local minimizer of the following optimization problem:

$$(PA_{\phi}) \min_{\mathbf{H}_{0},\cdots,\mathbf{H}_{L}} \mathcal{A}(\mathbf{H}_{0},\cdots,\mathbf{H}_{L};\boldsymbol{\phi})$$
 (7)

where $\mathcal{A}(\mathbf{H}_0, \dots, \mathbf{H}_L; \boldsymbol{\phi}) = \frac{1}{N} \sum_{n=1}^N \ell\left(\hat{\mathbf{y}}_{L-\text{A-ResNEst}}^{\boldsymbol{\phi}}(\mathbf{x}^n), \mathbf{y}^n\right)$. If Assumption 2 is satisfied, then the optimization problem in (7) is convex and

$$\epsilon = \mathcal{R}\left(\mathbf{W}_{L}^{*}, \mathbf{W}_{L+1}^{*}; \boldsymbol{\phi}\right) - \mathcal{A}\left(\mathbf{H}_{0}^{*}, \cdots, \mathbf{H}_{L}^{*}; \boldsymbol{\phi}\right) \geq 0 \qquad (8)$$

for any local minimizer $(\mathbf{W}_{L}^{*}, \mathbf{W}_{L+1}^{*})$ of (P_{ϕ}) using arbitrary feature finding parameters ϕ .

1.4 Condition for strictly improved representations

Question 1. What properties are fundamentally required for features to strictly improve the representation over blocks?

NteesContact Information:University of California, San Diego9500 Gilman Drive #0436, La Jolla, CA 92093

Email: kuc029@ucsd.edu

A fundamental answer is they need to be at least *linearly* unpredictable. Note that \mathbf{v}_i must be linearly unpredictable by $\mathbf{v}_0, \dots, \mathbf{v}_{i-1}$ if $\mathcal{A}(\mathbf{H}_0^*, \mathbf{H}_1^*, \dots, \mathbf{H}_{i-1}^*, \mathbf{0}, \dots, \mathbf{0}, \boldsymbol{\phi}^*) > \mathcal{A}(\mathbf{H}_0^*, \mathbf{H}_1^*, \dots, \mathbf{H}_i^*, \mathbf{0}, \dots, \mathbf{0}, \boldsymbol{\phi}^*)$ for any local minimum $(\mathbf{H}_0^*, \dots, \mathbf{H}_L^*, \boldsymbol{\phi}^*)$ in (PA). The residual representation \mathbf{x}_i is not strictly improved from the previous representation \mathbf{x}_{i-1} if the feature \mathbf{v}_i is linearly predictable by the previous features.

Figure 2: The proposed augmented ResNEst or A-ResNEst.

2 Wide ResNEsts with bottleneck residual blocks

Assumption 3. $M \ge N_o$.

Assumption 4. The linear inverse problem $\mathbf{x}_{L-1} = \sum_{i=0}^{L-1} \mathbf{W}_i \mathbf{v}_i$ has a unique solution.

Theorem 1. If Assumption 2 and 3 are satisfied, then the following two properties are true in (P_{ϕ}) under any ϕ such that Assumption 4 holds:

(a) every critical point with full rank \mathbf{W}_{L+1} is a global minimizer;

(b) $\epsilon = 0$ for every local minimizer.

Remark 2. Let Assumption 2 and 3 be true. Any local minimizer of (P) such that Assumption 4 is satisfied guarantees

(a) monotonically improved (no worse) residual representations over blocks;

(b) every residual representation is better than the input representation in the linear prediction sense.

Corollary 1. Let Assumption 2 and 3 be true. Any local minimum of (P_{α}) is smaller than or equal to any local minimum of (P_{β}) under Assumption 4 for any $\alpha = \{\mathbf{W}_{i-1}, \theta_i\}_{i=1}^{L_{\alpha}}$ and $\beta = \{\mathbf{W}_{i-1}, \theta_i\}_{i=1}^{L_{\beta}}$ where L_{α} and L_{β} are positive integers such that $L_{\alpha} > L_{\beta}$.

Corollary 2. Let $(\mathbf{W}_0^*, \dots, \mathbf{W}_{L+1}^*, \boldsymbol{\theta}_1^*, \dots, \boldsymbol{\theta}_L^*)$ be any local minimizer of (P) and $\boldsymbol{\phi}^* = {\mathbf{W}_{i-1}^*, \boldsymbol{\theta}_i^*}_{i=1}^L$. If Assumption 2, 3 and 4 are satisfied, then

(a) $\mathcal{R}\left(\mathbf{W}_{0}^{*}, \cdots, \boldsymbol{\theta}_{L}^{*}\right) \leq \min_{\mathbf{A} \in \mathbb{R}^{N_{o} \times N_{in}}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(\mathbf{A}\mathbf{x}^{n}, \mathbf{y}^{n}\right);$

(b) the above inequality is strict if $\mathcal{A}(\mathbf{H}_{0}^{*}, \mathbf{0}, \cdots, \mathbf{0}, \boldsymbol{\phi}^{*}) > \mathcal{A}(\mathbf{H}_{0}^{*}, \cdots, \mathbf{H}_{L}^{*}, \boldsymbol{\phi}^{*}).$

Theorem 2. If ℓ is the squared loss, and Assumption 1 and 3 are satisfied, then the following two properties are true at every saddle point of (P_{ϕ}) under any ϕ such that Assumption 4 holds:

(a) \mathbf{W}_{L+1} is rank-deficient;

(b) there exists at least one direction with strictly negative curvature.

3 DenseNEsts are wide ResNEsts with bottleneck residual blocks equipped with orthogonalities

For an *L*-block DenseNEst, we define the *i*-th dense block as a function $\mathbb{R}^{M_{i-1}} \mapsto \mathbb{R}^{M_i}$ of the form

$$\mathbf{x}_{i} = \mathbf{x}_{i-1} \mathbb{O} \mathbf{Q}_{i} \left(\mathbf{x}_{i-1}; \boldsymbol{\theta}_{i} \right)$$
(9)

for $i = 1, 2, \dots, L$ where the dense function \mathbf{Q}_i is a general nonlinear function; and \mathbf{x}_i is the output of the *i*-th dense block. For all $i \in \{1, 2, \dots, L\}$, $\mathbf{Q}_i(\mathbf{x}_{i-1}; \boldsymbol{\theta}_i) : \mathbb{R}^{M_{i-1}} \mapsto \mathbb{R}^{D_i}$ is a function implemented by a neural network with parameters $\boldsymbol{\theta}_i$ where $D_i = M_i - M_{i-1} \ge 1$ with $M_0 = N_{in} = D_0$. The output of a DenseNEst is defined as $\hat{\mathbf{y}}_{\text{DenseNEst}} = \mathbf{W}_{L+1}\mathbf{x}_L$ for $\mathbf{W}_{L+1} \in \mathbb{R}^{N_o \times M_L}$.

Figure 3: A generic vector-valued DenseNEst that has a chain of L dense blocks (or units). The symbol "©" represents the concatenation operation.

Figure 4: An equivalence to Figure 3 emphasizing the growth of the input dimension at each block.

The ERM problem (PD) for the DenseNEst is defined on $(\mathbf{W}_{L+1}, \boldsymbol{\theta}_1, \cdots, \boldsymbol{\theta}_L)$. The DenseNEst ERM problem for any fixed features, denoted as (PD_{ϕ}) , is given by

$$(\mathbf{PD}_{\boldsymbol{\phi}}) \min_{\mathbf{W}_{L+1}} \mathcal{D}(\mathbf{W}_{L+1}; \boldsymbol{\phi})$$
(10)

where $\mathcal{D}(\mathbf{W}_{L+1}; \boldsymbol{\phi}) = \frac{1}{N} \sum_{n=1}^{N} \ell\left(\hat{\mathbf{y}}_{L-\text{DenseNEst}}^{\boldsymbol{\phi}}(\mathbf{x}^n), \mathbf{y}^n\right)$.

Proposition 3. If Assumption 2 is satisfied, then any local minimum of (PD) is smaller than or equal to the minimum empirical risk given by any linear predictor of the input.

Proposition 4. Given any DenseNEst $\hat{\mathbf{y}}_{L\text{-DenseNEst}}$, there exists a wide ResNEst with bottleneck residual blocks $\hat{\mathbf{y}}_{L\text{-ResNEst}}^{\phi}$ such that $\hat{\mathbf{y}}_{L\text{-ResNEst}}^{\phi}(\mathbf{x}) = \hat{\mathbf{y}}_{L\text{-DenseNEst}}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{N_{in}}$. If , in addition, Assumption 2 and 3 are satisfied, then $\epsilon = 0$ for every local minimizer of (P_{ϕ}) .

Acknowledgements

This work was supported in part by NSF under Grant CCF-2124929 and Grant IIS-1838830, in part by NIH/NIDCD under Grant R01DC015436, Grant R21DC015046, and Grant R33DC015046, in part by Halicioğlu Data Science Institute, and in part by Wrethinking, the Foundation.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," in *European Conference on Computer Vision*. Springer, 2016, pp. 630–645.