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The direction-of-arrival (DoA) estimation problem
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Assumptions

Under the standard assumptions, the snapshot y(t) ∈ Cm at time t ∈ [T ] can
be modeled as

y(t) =
k∑

i=1

si (t)a(θi ) + n(t) = A(θ)s(t) + n(t), n(t) ∼ CN (0, ηIm) (1)

where a(θ) : [0, π] → Cm is the array manifold of the m-element uniform
linear array (ULA) whose i-th element is given by

[a(θ)]i = e
j2π

(
i−1− (m−1)

2

)
d
λ cos θ

, i ∈ [m] (2)

and A(θ) =
[
a(θ1) a(θ2) · · · a(θk)

]
. The k signals have equal powers.

Given {y(t)}Tt=1 and k ∈ [m − 1], how to find θ1, θ2, · · · , θk?
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Sparse linear arrays (SLAs)

Let n ≤ m and S = {e1, e2, · · · , en} ⊂ [m]. Consider
minimum redundancy arrays (MRAs) or nested arrays.a

The snapshot received on this physical array is

yS(t) = Γy(t). (3)

where Γ ∈ Rn×m is a row selection matrix given by

[Γ]ij =

{
1, if ei = j ,

0, otherwise,
, i ∈ [n], j ∈ [m]. (4)

Let R0 be the SCM of the ULA. The noiseless SCM of the
SLA/MRA is

RS = ΓR0Γ
T. (5)

Define R̂S = 1
T

∑T
t=1 yS(t)y

H
S(t).

aPal, Piya, and Palghat P. Vaidyanathan. “Nested arrays: A novel
approach to array processing with enhanced degrees of freedom.” IEEE
Transactions on Signal Processing 58, no. 8 (2010).
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The maximum likelihood problem

R0 + ηIm is positive semidefinite and possibly Toeplitz.

yS(t) ∼ CN (0,RS + ηIn).

One can formulate the following constrained optimization problem according
to the maximum likelihood principle:

min
v∈Cm

log det
(
ΓToep(v)ΓT

)
+ tr

((
ΓToep(v)ΓT

)−1

R̂S

)
subject to Toep(v) ⪰ 0.

(6)

Convex relaxation and majorization-minimization:

SPA (Yang et al., 2014), Wasserstein distance minimization (Wang et al.,
2019), StructCovMLE (Pote and Rao, 2023), etc
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The sparse and parametric approach (SPA)

Based on the covariance fitting criterion (Stoica et al., 2010)1, Yang et al. (2014)2

formulated the SPA which involves the following problem:

min
X∈Hn,v∈Cm

tr (X) + tr
(
R̂−1

S ΓToep(v)ΓT
)

subject to

 X R̂
1
2

S

R̂
1
2

S ΓToep(v)ΓT

Toep(v)

 ⪰ 0.
(7)

1Stoica, Petre, Prabhu Babu, and Jian Li. “New method of sparse parameter estimation in
separable models and its use for spectral analysis of irregularly sampled data.” IEEE
Transactions on Signal Processing 59, no. 1 (2010).

2Yang, Zai, Lihua Xie, and Cishen Zhang. “A discretization-free sparse and parametric
approach for linear array signal processing.” IEEE Transactions on Signal Processing 62, no. 19
(2014).
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Reconstruction models

Training a covariance matrix reconstruction model can be formulated as
minimizing the empirical risk

min
W

1

L

L∑
l=1

d

(
g ◦ fW

(
R̂

(l)
S

)
, h

(
R(l)

))
. (8)

fW : Cn×n → Cm×m is a DNN model with parameters W .

{R̂(l)
S ,R(l)}Ll=1 is a dataset of sample covariance matrices at the SLA and

noiseless covariance matrices at the corresponding ULA.

h is a function that extracts the learning target.

g is a transformation that ensures some properties of a valid covariance
matrix. For example, picking the function

g(E) = EEH + δI (9)

for some δ ≥ 0 enforces the predicted matrix being always positive
semidefinite (or positive definite).

d : Cm×m × Cm×m → [0,∞) is a loss function of choice.
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How to design the loss function?

Question 1

How to design d in (8)?

Frobenius norm:
dFro

(
R̂,R

)
=

∥∥∥R̂− R
∥∥∥
F
. (10)

αR for any α ∈ R \ {0} leads to identical signal and noise subspaces.

dFro(αR,R) → ∞ as α → ∞ or α → −∞ for any positive definite matrix R.
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A scale-invariant loss function

To avoid such a penalization and allow a larger solution space, we propose the
following scale-invariant reconstruction loss:

dSI
(
R̂,R

)
= − log

 ∥α∗R∥F
ϵ+

∥∥∥α∗R− R̂
∥∥∥
F

 (11)

where ϵ ≥ 0 is a constant and

α∗ = argmin
α∈R

∥∥∥αR− R̂
∥∥∥
F
. (12)

The scale-invariant reconstruction loss dSI is invariant to scaling of the
matrices in the following sense:

dSI (γR,R) → −∞ as ϵ → 0 (13)

for every γ ̸= 0.

Approximately, this property allows dSI to expand the solution space from a
point to a line in Cm×m.

If ϵ > 0, in general we have dSI (γR1,R1) ̸= dSI (γR2,R2) for R1 ̸= R2.
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Signal and noise subspaces

Denoting Es as a matrix whose columns are signal eigenvectors of R, the
scale-invariant reconstruction loss can be applied to the signal subspace matrix
h(R) = EsEH

s as follows

− log


∥∥α∗EsEH

s

∥∥
F

ϵ+

∥∥∥∥α∗EsEH
s − g ◦ fW

(
R̂S

)∥∥∥∥
F

 (14)

where

α∗ = argmin
α∈R

∥∥∥∥αEsE
H
s − g ◦ fW

(
R̂S

)∥∥∥∥
F

. (15)

The same formulation as in (14) and (15) can be applied to the noise subspace,
where h(R) = EnEH

n and En denotes the noise subspace.
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The affine invariant distance

The affine invariant distance (Barthelme and Utschick, 2021)

dAff
(
R̂,R

)
=

∥∥∥∥log (R− 1
2 R̂R− 1

2

)∥∥∥∥
F

(16)

measures the length of the shortest curve between two positive definite matrices
(Bhatia, 2007).

Proposition 1

For every m-by-m Hermitian matrix such that R ≻ 0 and for every α > 0,

dAff (αR,R) =
√
m|logα|. (17)

A logarithmic growth in terms of scaling, much slower than the linear rate of
the Frobenius norm.
Despite dAff being not scale-invariant, its increased distance is invariant to
the underlying matrix and only depends on the scaling factor, unlike the
Frobenius norm, which depends on the matrix.
For R1 ̸= R2, we have dAff (αR1,R1) = dAff (αR2,R2), ensuring the same
penality for perfect fittings.
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Subspace representation learning (Chen and Rao, 2025)

Let D =
{
R̂

(l)
S ,U (l)

}L

l=1
be a dataset. Construct

fW : Cn×n × [m − 1] →
m−1⋃
k=1

Gr(k ,m) (18)

where Gr(k,m) is the Grassmann manifold or Grassmannian such that

fW ∗

(
R̂S , k

)
≈ U (19)

where U is the corresponding signal or noise subspace.

Solve

min
W

1

L

L∑
l=1

dk=k(l)

(
fW

(
R̂

(l)
S , k(l)

)
,U (l)

)
(20)

where dk : Gr(k ,m)× Gr(k ,m) → [0,∞) is some distance.
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The geodesic distance

Let U , Ũ ∈ Gr(k,m) and U ∈ Cm×k and Ũ ∈ Cm×k be matrices whose
columns form unitary bases of U and Ũ , respectively.

The principal angles ϕk =
[
ϕ1 ϕ2 · · · ϕk

]T
between U and Ũ can be

calculated by

ϕi

(
U , Ũ

)
= cos−1

(
σi

(
UHŨ

))
(21)

for i ∈ [k] where σ1 ≥ σ2 ≥ · · · ≥ σk are the singular values of UHŨ.

The geodesic distance

dGr−k (U1,U2) =

√√√√ k∑
i=1

ϕ2
i (U1,U2) (22)

defines the length of the shortest curve between two points on the
Grassmannian Gr(k ,m).
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Experimental setup

n = 4, m = 7, S = {1, 2, 5, 7} if not explicitly specified.

T = 50 if not explicitly specified. SNR = 10 log10

(
1
k

∑k
i=1 pi
η

)
.

p1 = p2 = · · · = pk .

k ∈ [m − 1].

For any k ∈ [m − 1], the DoAs θ1, θ2, · · · , θk are selected at random in the

range
[
1
6π,

5
6π

]
with a minimum separation constraint mini ̸=j |θi − θj | ≥ 1

45π.

Invariance-Aware Loss Functions for Gridless Direction-of-Arrival Estimation 23 / 31



Evaluation and methods

Evaluation:

The mean squared error (MSE)

1

Ltest

Ltest∑
l=1

1

k
min
Π∈Pk

∥∥∥Πθ̂l − θl

∥∥∥2
2

(23)

for a source number k ∈ [m − 1] where Ltest = 104 is the total number of
random trials.

Methods:

We denote the proposed loss functions in (11) and (14) as “SI-Cov” and
“SI-Sig,” respectively.
Optimization-based approaches

Direct augmentation (DA) (Pillai et al., 1985)
SPA (Yang et al., 2014)
Wasserstein distance based approach (WDA) (Wang et al., 2019)

DNN-based covariance matrix reconstruction
Cov and Cov-Aff (Barthelme and Utschick, 2021)
Cov-T (Wu et al., 2022)

DNN-based subspace reconstruction
Subspace representation learning (Subspace) (Chen and Rao, 2025)
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The DNN architecture, dataset, and training procedure

×L

×(L− 1)

×(L− 1)

ReLU

Conv

ReLU

Conv

Block

Input

Conv

Block

+

Block Conv

+

Block

+

Block Conv

+

Block

+

ReLU

AvgPool

Affine

Output

Figure 1: An illustration of a 3-stage L-block ResNet model (He et al., 2016).

Wide ResNet 16-8 (Zagoruyko and Komodakis, 2016) (11M parameters).

For each k ∈ [m − 1], there are 2× 106 and 6× 105 random data points for
training and validation, respectively. mini ̸=j |θi − θj | ≥ 1

60π.

Train 50 epochs with the SGD algorithm and one cycle learning rate
scheduler (Smith and Topin, 2019). The batch size is 4096.

The learning rates for Cov, SI-Cov, SI-Sig, Cov-Aff, and Subspace are 0.01,
0.05, 0.2, 0.005, and 0.1, respectively, found by grid search.
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MSE vs. SNR
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Figure 2: MSE vs. SNR. The proposed scale-invariant covariance matrix reconstruction
approach (SI-Cov) outperforms DA, SPA, and Cov when k > 2.
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MSE vs. Number of snapshots
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Figure 3: MSE vs. number of snapshots. Despite these models are trained with their
corresponding loss functions at T = 50 snapshots, they are able to perform well on a
wide range of snapshots.

The proposed SI-Cov outperforms Cov, showing the advantage of using the
scale-invariant strategy.
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On greater degrees of invariance
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Figure 4: The subspace loss outperforms all the other loss functions designed for
covariance matrix reconstruction.

In general, increasing the degrees of invariance leads to a better optimization
landscape and yields better performance.

SI-Cov and Cov-Aff have mixed results.

Invariance-Aware Loss Functions for Gridless Direction-of-Arrival Estimation 28 / 31



−10 −5 0 5 10 15 20

10−6

10−5

10−4

10−3

10−2

10−1

SNR (dB)

M
S
E
( ra

d
2
)

(a) k = 1

SPA

WDA

Cov-T

Cov

Cov-Aff

DA

SI-Cov

SI-Sig

Subspace

−10 −5 0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

SNR (dB)

(b) k = 2

−10 −5 0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

SNR (dB)

(c) k = 3

−10 −5 0 5 10 15 20

10−4

10−3

10−2

10−1

SNR (dB)

M
S
E
( ra

d
2
)

(d) k = 4

−10 −5 0 5 10 15 20

10−3

10−2

10−1

SNR (dB)

(e) k = 5

−10 −5 0 5 10 15 20

10−2.5

10−2

10−1.5

SNR (dB)

(f) k = 6

−10 −5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

M
S
E
( ra

d
2
)

(g) k = 7

−10 −5 0 5 10 15 20

10−2

10−1.5

SNR (dB)

(h) k = 8

−10 −5 0 5 10 15 20

10−1.9

10−1.5

SNR (dB)

(i) k = 9

Figure 5: MSE vs. SNR. n = 5.
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Summary

A new family of scale-invariant loss functions is proposed for gridless DoA
estimation using SLAs.

We study several loss functions and analyze how invariance properties of a
loss can play an important role in shaping the optimization landscape of a
DNN model.

The scale-invariant losses outperform the Frobenius norm that does not have
an invariance property.

The subspace loss is better than the scale-invariant losses and the affine
invariant distance.

These observations provide evidence that greater invariance enhances a
DNN’s solution space, improving performance in gridless DoA estimation.
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