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Abstract

e Covariance matrix reconstruction has been the most
widely used guiding objective in gridless direction-of-
arrival (DoA) estimation for sparse linear arrays.

e We propose new loss functions that are invariant to matrix
scaling and study loss functions with varying degrees of
invariance.

* We provide evidence that designing loss functions with a
greater degree of invariance 1s advantageous.

e Subspace loss from subspace representation learning
achieves state-of-the-art performance.

1 Gridless DoA estimation

Under the standard assumptions,
the snapshot at time ¢t € [T is
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Letn < mand S = {ej,e,--- ,e,} C |m|. Consider a sparse

linear array (SLA) such as a minimum redundancy array (MRA)
or a nested array. The snapshot received on this physical array 1s
ys(t) = I'y(t). where I' € R"™"™ is a row selection matrix
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/ 0, otherwise,

Let Ry be the SCM of the ULA. The noiseless SCM of the SLA
is Rs = TRoI'". Define Rs = + >, ys(t)yR(1).

Question 1. Find 6, 0,, - - - , 0. given f{g and k.

e Direct augmentation (DA) [1]:

min HI‘Toep(V)I‘T — Rg” . (4)
veCm F
e Sparse and parametric approach (SPA) [2]:
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subject to

2 DNN-based covariance matrix reconstruction

Training a covariance matrix reconstruction model can be formu-
lated as minimizing the empirical risk

min ili‘d <g o fir (R@) h (R@)) | (6)

o fyy : C"*" — C"™ " 1s a DNN model with parameters 1.

o {f{g), RWL is a dataset of sample covariance matrices at the
SLLA and noiseless covariance matrices at the ULA.

e h is a function that extracts the learning target.

e g 1s a transformation that ensures some properties of a valid
covariance matrix. For example, picking the function g(E) =
EE" + 41 for some § > 0 enforces the predicted matrix being
always positive semidefinite (or positive definite).

o : C"*™ x C™™ — |0, 00) is a loss function of choice.
Question 2. How to design d in (6)?

2.1 Frobenius norm
dFro (Ra R) —

Remark 1. aR for any a € R\ {0} leads to identical signal and
noise subspaces.

R — RH (Cov). (7)
F

Remark 2. dg,(aR,R) — oo as |a] — oo for any R > 0.

2.2 Scale-invariant loss functions

To avoid such a penalization and allow a larger solution space,
we propose the tollowing scale-invariant reconstruction loss:

/ |a"R| - \
r/

ds; (R, R) — _log (SI-Cov) (8)

\6 + HOz*R ~R

where ¢ > ( 1s a constant and

oR - R (9)

o = arg min
acR

o
Remark 3. dg; is invariant to scaling of the matrices in the fol-
lowing sense: For every v # 0,

dsi (YR, R) = —0c0 as € — 0. (10)

Remark 4. Approximately, the property in Remark 3 allows dg; to
expand the solution space from a point to a line in C"*",

Remark 5.1f ¢ > 0, in general we have dg;(7Ri,R;) #
dsi (YR2, R2) for R; # Ro.

Denoting E, as a matrix whose columns are signal eigenvectors
of R, the scale-invariant reconstruction loss can be applied to the
signal subspace matrix h(R) = E,E" as follows

| EE

+ || EEH — (R)
\E & gOfW S F/

— log (11)

where

o = argmin ||oB,E" — go fir (RS) (SI-Sig). (12)

acR

F

The same formulation can be applied to the noise subspace,
where h(R) = E,E!! and E,, denotes the noise subspace.
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2.3 The affine invariant distance

The affine invariant distance [3]

A (R, R) — |llog (R—%RR—%) (Cov-Aff)  (13)

F

measures the length of the shortest curve between two positive
definite matrices.

Proposition 1. For every m-by-m Hermitian matrix such that
R > 0 and for every a > (),

dasi (@R, R) = v/mllog a|. (14)

Remark 6. A logarithmic growth in terms of scaling, much slower
than the linear rate of the Frobenius norm.

Remark 7. dug is not scale-invariant, its increased distance is in-
variant to the underlying matrix and only depends on the scaling
factor, unlike the Frobenius norm, which depends on the matrix.

Remark 8. For R, # Ry we have dyp(aR,R)) =
dag(aRo, Ry), ensuring the same penality for perfect fittings.

3 Subspace representation learning

Loss functions with the greatest degrees of invariance are per-
haps the ones proposed in the subspace representation learning
methodology [4] that avoids reconstructing covariance matrices.
Construct
m—1
fwr € x [m — 1] — | ] Gr(k, m) (15)
k=1

where Gr(k, m) is the Grassmannian such that

Fir- (Rg, k) ~ U (16)
where U 1s the corresponding signal or noise subspace. Let
) L
D = {R‘@,Z/{ <l>}l be a dataset. Solve
—1

I
1 :
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where d, : Gr(k, m) x Gr(k,m) — |0, 00) is some distance.
LetU,U € Gr(k,m)and U € C"™* and U € C"™** be matrices

whose columns form unitary bases of / and U, respectively. The

principal angles ¢1, o, - - - , ¢y, between U and U are given by

0y (L[,Z]) — cos ! (02- (UHfJ)> (18)

for 7 € |k| where o1 > 09 > --- > oy are the singular values of

U"U. The geodesic distance

k

dee—k (U, Us) = \ > 07 (U, Us) (19)

1=1

defines the length of the shortest curve between two points on the
Grassmannian Gr(k, m).
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4 Numerical results
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Figure 1: MSE vs. SNR. The proposed scale-invariant covariance matrix re-
construction approach (SI-Cov) outperforms DA, SPA, and Cov when £ > 2.
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Figure 2: MSE vs. number of snapshots. The proposed SI-Cov outperforms
Cov, showing the advantage of using the scale-invariant strategy.
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Figure 3: Subspace learning outperforms all the other methods.
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