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Abstract

• Covariance matrix reconstruction has been the most
widely used guiding objective in gridless direction-of-
arrival (DoA) estimation for sparse linear arrays.

• We propose new loss functions that are invariant to matrix
scaling and study loss functions with varying degrees of
invariance.

• We provide evidence that designing loss functions with a
greater degree of invariance is advantageous.

• Subspace loss from subspace representation learning
achieves state-of-the-art performance.

1 Gridless DoA estimation

Under the standard assumptions,
the snapshot at time t ∈ [T ] is

y(t) =
k∑
i=1

si(t)a(θi) +n(t) (1)

where a(θ) : [0, π] → Cm is the
array manifold of the m-element
ULA whose i-th element is

[a(θ)]i = e
j2π

(
i−1−(m−1)

2

)
d
λ cos θ, i ∈ [m]. (2)

Let n ≤ m and S = {e1, e2, · · · , en} ⊂ [m]. Consider a sparse
linear array (SLA) such as a minimum redundancy array (MRA)
or a nested array. The snapshot received on this physical array is
yS(t) = Γy(t). where Γ ∈ Rn×m is a row selection matrix

[Γ]ij =

{
1, if ei = j,

0, otherwise,
, i ∈ [n], j ∈ [m]. (3)

Let R0 be the SCM of the ULA. The noiseless SCM of the SLA
is RS = ΓR0Γ

T. Define R̂S = 1
T

∑T
t=1 yS(t)y

H
S(t).

Question 1. Find θ1, θ2, · · · , θk given R̂S and k.
• Direct augmentation (DA) [1]:

min
v∈Cm

∥∥∥ΓToep(v)ΓT − R̂S

∥∥∥
F
. (4)

• Sparse and parametric approach (SPA) [2]:

min
X∈Hn,v∈Cm

tr (X) + tr
(
R̂−1

S ΓToep(v)ΓT
)

subject to

X R̂
1
2

S

R̂
1
2

S ΓToep(v)ΓT

Toep(v)

 ⪰ 0.
(5)

2 DNN-based covariance matrix reconstruction

Training a covariance matrix reconstruction model can be formu-
lated as minimizing the empirical risk

min
W

1

L

L∑
l=1

d

(
g ◦ fW

(
R̂

(l)
S

)
, h

(
R(l)

))
. (6)

• fW : Cn×n → Cm×m is a DNN model with parameters W .

• {R̂(l)
S ,R(l)}Ll=1 is a dataset of sample covariance matrices at the

SLA and noiseless covariance matrices at the ULA.
•h is a function that extracts the learning target.
• g is a transformation that ensures some properties of a valid

covariance matrix. For example, picking the function g(E) =
EEH + δI for some δ ≥ 0 enforces the predicted matrix being
always positive semidefinite (or positive definite).

• d : Cm×m × Cm×m → [0,∞) is a loss function of choice.
Question 2. How to design d in (6)?

2.1 Frobenius norm

dFro

(
R̂,R

)
=
∥∥∥R̂−R

∥∥∥
F

(Cov). (7)

Remark 1.αR for any α ∈ R \ {0} leads to identical signal and
noise subspaces.
Remark 2. dFro(αR,R) → ∞ as |α| → ∞ for any R ≻ 0.

2.2 Scale-invariant loss functions

To avoid such a penalization and allow a larger solution space,
we propose the following scale-invariant reconstruction loss:

dSI

(
R̂,R

)
= − log

 ∥α∗R∥F
ϵ +

∥∥∥α∗R− R̂
∥∥∥
F

 (SI-Cov) (8)

where ϵ ≥ 0 is a constant and

α∗ = argmin
α∈R

∥∥∥αR− R̂
∥∥∥
F
. (9)

Remark 3. dSI is invariant to scaling of the matrices in the fol-
lowing sense: For every γ ̸= 0,

dSI (γR,R) → −∞ as ϵ → 0. (10)

Remark 4. Approximately, the property in Remark 3 allows dSI to
expand the solution space from a point to a line in Cm×m.
Remark 5. If ϵ > 0, in general we have dSI (γR1,R1) ̸=
dSI (γR2,R2) for R1 ̸= R2.

Denoting Es as a matrix whose columns are signal eigenvectors
of R, the scale-invariant reconstruction loss can be applied to the
signal subspace matrix h(R) = EsE

H
s as follows

− log


∥∥α∗EsE

H
s

∥∥
F

ϵ +

∥∥∥∥α∗EsEH
s − g ◦ fW

(
R̂S

)∥∥∥∥
F

 (11)

where

α∗ = argmin
α∈R

∥∥∥∥αEsE
H
s − g ◦ fW

(
R̂S

)∥∥∥∥
F

(SI-Sig). (12)

The same formulation can be applied to the noise subspace,
where h(R) = EnE

H
n and En denotes the noise subspace.

2.3 The affine invariant distance

The affine invariant distance [3]

dAff

(
R̂,R

)
=

∥∥∥∥log (R−1
2R̂R−1

2

)∥∥∥∥
F

(Cov-Aff) (13)

measures the length of the shortest curve between two positive
definite matrices.
Proposition 1. For every m-by-m Hermitian matrix such that
R ≻ 0 and for every α > 0,

dAff (αR,R) =
√
m|logα|. (14)

Remark 6. A logarithmic growth in terms of scaling, much slower
than the linear rate of the Frobenius norm.
Remark 7. dAff is not scale-invariant, its increased distance is in-
variant to the underlying matrix and only depends on the scaling
factor, unlike the Frobenius norm, which depends on the matrix.
Remark 8. For R1 ̸= R2, we have dAff (αR1,R1) =
dAff (αR2,R2), ensuring the same penality for perfect fittings.

3 Subspace representation learning

Loss functions with the greatest degrees of invariance are per-
haps the ones proposed in the subspace representation learning
methodology [4] that avoids reconstructing covariance matrices.

Construct

fW : Cn×n × [m− 1] →
m−1⋃
k=1

Gr(k,m) (15)

where Gr(k,m) is the Grassmannian such that

fW ∗

(
R̂S, k

)
≈ U (16)

where U is the corresponding signal or noise subspace. Let

D =
{
R̂

(l)
S ,U (l)

}L

l=1
be a dataset. Solve

min
W

1

L

L∑
l=1

dk=k(l)

(
fW

(
R̂

(l)
S , k(l)

)
,U (l)

)
(17)

where dk : Gr(k,m)× Gr(k,m) → [0,∞) is some distance.
Let U , Ũ ∈ Gr(k,m) and U ∈ Cm×k and Ũ ∈ Cm×k be matrices

whose columns form unitary bases of U and Ũ , respectively. The
principal angles ϕ1, ϕ2, · · · , ϕk between U and Ũ are given by

ϕi

(
U , Ũ

)
= cos−1

(
σi

(
UHŨ

))
(18)

for i ∈ [k] where σ1 ≥ σ2 ≥ · · · ≥ σk are the singular values of
UHŨ. The geodesic distance

dGr−k (U1,U2) =

√√√√ k∑
i=1

ϕ2
i (U1,U2) (19)

defines the length of the shortest curve between two points on the
Grassmannian Gr(k,m).

4 Numerical results
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Figure 1: MSE vs. SNR. The proposed scale-invariant covariance matrix re-
construction approach (SI-Cov) outperforms DA, SPA, and Cov when k > 2.
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Figure 2: MSE vs. number of snapshots. The proposed SI-Cov outperforms
Cov, showing the advantage of using the scale-invariant strategy.
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Figure 3: Subspace learning outperforms all the other methods.
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