A Comparative Study of Invariance-Aware Loss Functions for Deep Learning-based **Gridless Direction-of-Arrival Estimation**

Kuan-Lin Chen[†], Bhaskar D. Rao Department of Electrical and Computer Engineering, University of California, San Diego

Abstract

- Covariance matrix reconstruction has been the most widely used guiding objective in gridless direction-of**arrival (DoA)** estimation for sparse linear arrays.
- We propose **new loss functions** that are invariant to matrix scaling and study loss functions with varying degrees of invariance.
- We provide evidence that designing loss functions with a greater degree of invariance is advantageous.
- Subspace loss from subspace representation learning achieves state-of-the-art performance.

Gridless DoA estimation

Under the standard assumptions, the snapshot at time $t \in [T]$ is

$$\mathbf{y}(t) = \sum_{i=1}^{k} s_i(t) \mathbf{a}(\theta_i) + \mathbf{n}(t) \quad (1$$

where $\mathbf{a}(\theta)$: $[0,\pi] \to \mathbb{C}^m$ is the array manifold of the *m*-element ULA whose *i*-th element is

$$[\mathbf{a}(\theta)]_i = e^{j2\pi \left(i - 1 - \frac{(m-1)}{2}\right)\frac{d}{\lambda}\cos\theta}, i \in [m].$$
(2)

Let $n \leq m$ and $S = \{e_1, e_2, \cdots, e_n\} \subset [m]$. Consider a sparse linear array (SLA) such as a minimum redundancy array (MRA) or a nested array. The snapshot received on this physical array is $\mathbf{y}_{\mathcal{S}}(t) = \mathbf{\Gamma} \mathbf{y}(t)$. where $\mathbf{\Gamma} \in \mathbb{R}^{n \times m}$ is a row selection matrix

$$[\mathbf{\Gamma}]_{ij} = \begin{cases} 1, & \text{if } e_i = j, \\ 0, & \text{otherwise,} \end{cases}, i \in [n], j \in [m]. \tag{3}$$

Let \mathbf{R}_0 be the SCM of the ULA. The noiseless SCM of the SLA is $\mathbf{R}_{\mathcal{S}} = \mathbf{\Gamma} \mathbf{R}_0 \mathbf{\Gamma}^{\mathsf{T}}$. Define $\hat{\mathbf{R}}_{\mathcal{S}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{y}_{\mathcal{S}}(t) \mathbf{y}_{\mathcal{S}}^{\mathsf{H}}(t)$.

Question 1. Find $\theta_1, \theta_2, \cdots, \theta_k$ given \mathbf{R}_S and k.

• Direct augmentation (DA) [1]:

$$\min_{\boldsymbol{\in}\mathbb{C}^m} \quad \left\| \boldsymbol{\Gamma} \mathbf{Toep}(\mathbf{v}) \boldsymbol{\Gamma}^{\mathsf{T}} - \hat{\mathbf{R}}_{\mathcal{S}} \right\|_F.$$
(4)

• Sparse and parametric approach (SPA) [2]:

 $\operatorname{tr}(\mathbf{X}) + \operatorname{tr}\left(\hat{\mathbf{R}}_{S}^{-1}\boldsymbol{\Gamma}\operatorname{Toep}(\mathbf{v})\boldsymbol{\Gamma}^{\mathsf{T}}\right)$ $\min_{\mathbf{X}\in\mathbb{H}^n,\mathbf{v}\in\mathbb{C}^m}$ $\mathbf{R}^{\overline{2}}_{\mathcal{S}}$ (5) $\mathbf{\Lambda}$ subject to $\hat{\mathbf{R}}_{S}^{\frac{1}{2}} \boldsymbol{\Gamma} \operatorname{Toep}(\mathbf{v}) \boldsymbol{\Gamma}^{\mathsf{T}}$ $\succeq 0.$ $foep(\mathbf{v})$

2 DNN-based covariance matrix reconstruction

Training a covariance matrix reconstruction model can be formulated as minimizing the empirical risk

$$\min_{W} \quad \frac{1}{L} \sum_{l=1}^{L} d\left(g \circ f_{W}\left(\hat{\mathbf{R}}_{S}^{(l)}\right), h\left(\mathbf{R}^{(l)}\right)\right). \tag{6}$$

- $f_W : \mathbb{C}^{n \times n} \to \mathbb{C}^{m \times m}$ is a DNN model with parameters W.
- $\{\hat{\mathbf{R}}_{S}^{(l)}, \mathbf{R}^{(l)}\}_{l=1}^{L}$ is a dataset of sample covariance matrices at the SLA and noiseless covariance matrices at the ULA.
- *h* is a function that extracts the learning target.
- g is a transformation that ensures some properties of a valid covariance matrix. For example, picking the function $g(\mathbf{E}) =$ $\mathbf{E}\mathbf{E}^{\mathsf{H}} + \delta \mathbf{I}$ for some $\delta \geq 0$ enforces the predicted matrix being always positive semidefinite (or positive definite).
- $d: \mathbb{C}^{m \times m} \times \mathbb{C}^{m \times m} \to [0, \infty)$ is a loss function of choice.

Question 2. *How to design* d *in* (6)?

2.1 Frobenius norm

$$d_{\text{Fro}}\left(\hat{\mathbf{R}},\mathbf{R}\right) = \left\|\hat{\mathbf{R}}-\mathbf{R}\right\|_{F} \qquad \text{(Cov).}$$
(7)

Remark 1. α **R** for any $\alpha \in \mathbb{R} \setminus \{0\}$ leads to identical signal and noise subspaces.

Remark 2. $d_{Fro}(\alpha \mathbf{R}, \mathbf{R}) \rightarrow \infty$ as $|\alpha| \rightarrow \infty$ for any $\mathbf{R} \succ 0$.

2.2 Scale-invariant loss functions

To avoid such a penalization and allow a larger solution space, we propose the following *scale-invariant reconstruction loss*:

$$d_{\mathrm{SI}}\left(\hat{\mathbf{R}},\mathbf{R}\right) = -\log\left(\frac{\|\alpha^*\mathbf{R}\|_F}{\epsilon + \|\alpha^*\mathbf{R} - \hat{\mathbf{R}}\|_F}\right) \qquad (\mathrm{SI-Cov}) \quad (8)$$

where $\epsilon \ge 0$ is a constant and

$$\alpha^* = \underset{\alpha \in \mathbb{R}}{\arg\min} \left\| \alpha \mathbf{R} - \hat{\mathbf{R}} \right\|_F.$$
(9)

Remark 3. d_{SI} is invariant to scaling of the matrices in the fol*lowing sense: For every* $\gamma \neq 0$ *,*

$$d_{SI}(\gamma \mathbf{R}, \mathbf{R}) \to -\infty \quad as \quad \epsilon \to 0.$$
 (10)

Remark 4. Approximately, the property in Remark 3 allows d_{SI} to expand the solution space from a point to a line in $\mathbb{C}^{m \times m}$.

Remark 5. If $\epsilon > 0$, in general we have $d_{SI}(\gamma \mathbf{R}_1, \mathbf{R}_1) \neq 0$ $d_{SI}(\gamma \mathbf{R}_2, \mathbf{R}_2)$ for $\mathbf{R}_1 \neq \mathbf{R}_2$.

Denoting E_s as a matrix whose columns are signal eigenvectors of \mathbf{R} , the scale-invariant reconstruction loss can be applied to the signal subspace matrix $h(\mathbf{R}) = \mathbf{E}_s \mathbf{E}_s^{\mathsf{H}}$ as follows

$$-\log\left(\frac{\left\|\alpha^{*}\mathbf{E}_{s}\mathbf{E}_{s}^{\mathsf{H}}\right\|_{F}}{\epsilon+\left\|\alpha^{*}\mathbf{E}_{s}\mathbf{E}_{s}^{\mathsf{H}}-g\circ f_{W}\left(\hat{\mathbf{R}}_{\mathcal{S}}\right)\right\|_{F}}\right)$$
(11)

where

$$\alpha^* = \underset{\alpha \in \mathbb{R}}{\operatorname{arg\,min}} \left\| \alpha \mathbf{E}_s \mathbf{E}_s^{\mathsf{H}} - g \circ f_W \left(\hat{\mathbf{R}}_{\mathcal{S}} \right) \right\|_F \qquad \text{(SI-Sig).} \quad (12)$$

The same formulation can be applied to the noise subspace, where $h(\mathbf{R}) = \mathbf{E}_n \mathbf{E}_n^{\mathsf{H}}$ and \mathbf{E}_n denotes the noise subspace.

UC San Diego **JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering**

[†]₩ kuc029@ucsd.edu

2.3 The affine invariant distance

The affine invariant distance [3]

$$d_{\text{Aff}}\left(\hat{\mathbf{R}},\mathbf{R}\right) = \left\|\log\left(\mathbf{R}^{-\frac{1}{2}}\hat{\mathbf{R}}\mathbf{R}^{-\frac{1}{2}}\right)\right\|_{F} \qquad \text{(Cov-Aff)} \qquad (13)$$

measures the length of the shortest curve between two positive definite matrices.

Proposition 1. For every m-by-m Hermitian matrix such that $\mathbf{R} \succ 0$ and for every $\alpha > 0$,

$$d_{\text{Aff}}(\alpha \mathbf{R}, \mathbf{R}) = \sqrt{m} |\log \alpha|.$$
 (14)

Remark 6. *A logarithmic growth in terms of scaling, much slower* than the linear rate of the Frobenius norm.

Remark 7. *d*_{Aff} is not scale-invariant, its increased distance is invariant to the underlying matrix and only depends on the scaling factor, unlike the Frobenius norm, which depends on the matrix.

Remark 8. For $\mathbf{R}_1 \neq \mathbf{R}_2$, we have $d_{Aff}(\alpha \mathbf{R}_1, \mathbf{R}_1) =$ $d_{Aff}(\alpha \mathbf{R}_2, \mathbf{R}_2)$, ensuring the same penality for perfect fittings.

Subspace representation learning

Loss functions with the greatest degrees of invariance are perhaps the ones proposed in the subspace representation learning methodology [4] that avoids reconstructing covariance matrices. Construct

> $f_W: \mathbb{C}^{n \times n} \times [m-1] \to \bigcup^n \mathbf{Gr}(k,m)$ (15)

where Gr(k, m) is the *Grassmannian* such that

$$f_{W^*}\left(\hat{\mathbf{R}}_{\mathcal{S}},k\right) \approx \mathcal{U}$$
 (16)

where \mathcal{U} is the corresponding signal or noise subspace. Let $\mathcal{D} = \left\{ \hat{\mathbf{R}}_{\mathcal{S}}^{(l)}, \mathcal{U}^{(l)}
ight\}^{T}$ be a dataset. Solve

$$\min_{W} \quad \frac{1}{L} \sum_{l=1}^{L} d_{k=k^{(l)}} \left(f_{W} \left(\hat{\mathbf{R}}_{\mathcal{S}}^{(l)}, k^{(l)} \right), \mathcal{U}^{(l)} \right)$$
(17)

where $d_k : \operatorname{Gr}(k, m) \times \operatorname{Gr}(k, m) \to [0, \infty)$ is some distance.

Let $\mathcal{U}, \mathcal{\tilde{U}} \in Gr(k, m)$ and $\mathbf{U} \in \mathbb{C}^{m \times k}$ and $\mathbf{\tilde{U}} \in \mathbb{C}^{m \times k}$ be matrices whose columns form unitary bases of \mathcal{U} and \mathcal{U} , respectively. The principal angles $\phi_1, \phi_2, \cdots, \phi_k$ between \mathcal{U} and \mathcal{U} are given by

$$\phi_i \left(\mathcal{U}, \tilde{\mathcal{U}} \right) = \cos^{-1} \left(\sigma_i \left(\mathbf{U}^{\mathsf{H}} \tilde{\mathbf{U}} \right) \right)$$
(18)

for $i \in [k]$ where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$ are the singular values of $\mathbf{U}^{\mathsf{H}}\tilde{\mathbf{U}}$. The geodesic distance

$$d_{\mathbf{Gr}-k}\left(\mathcal{U}_{1},\mathcal{U}_{2}\right) = \sqrt{\sum_{i=1}^{k} \phi_{i}^{2}\left(\mathcal{U}_{1},\mathcal{U}_{2}\right)}$$
(19)

defines the length of the shortest curve between two points on the Grassmannian Gr(k, m).

Numerical results

Figure 1: MSE vs. SNR. The proposed scale-invariant covariance matrix reconstruction approach (SI-Cov) outperforms DA, SPA, and Cov when k > 2.

Figure 2: MSE vs. number of snapshots. The proposed SI-Cov outperforms Cov, showing the advantage of using the scale-invariant strategy.

Figure 3: Subspace learning outperforms all the other methods.

Acknowledgements

This work was supported in part by IEEE Signal Processing Society Scholarship, and in part by NSF under Grant CCF-2225617 and Grant CCF-2124929.

References

- [1] S. U. Pillai, Y. Bar-Ness, and F. Haber, "A new approach to array geometry for improved spatial spectrum estimation," Proceedings of the IEEE, vol. 73, no. 10, pp. 1522–1524, 1985.
- [2] Z. Yang, L. Xie, and C. Zhang, "A discretization-free sparse and parametric approach for linear array signal processing," IEEE Transactions on Signal Processing, vol. 62, no. 19, pp. 4959–4973, 2014.
- [3] A. Barthelme and W. Utschick, "DoA estimation using neural network-based covariance matrix reconstruction," IEEE Signal Processing Letters, vol. 28, pp. 783-787, 2021.
- [4] K.-L. Chen and B. D. Rao, "Subspace representation learning for sparse linear arrays to localize more sources than sensors: A deep learning methodology," IEEE Transactions on Signal Processing, vol. 73, pp. 1293-1308, 2025.