Empowering Speech Processing with Deep Neural Networks: Theory and Applications

Kuan-Lin Chen Advisor: **Bhaskar D. Rao** Department of Electrical and Computer Engineering, University of California, San Diego

1 Complexity of deep ReLU networks

Theorem 1 (Theorem 1 of [1]). Any continuous piecewise linear (CPWL) function $p: \mathbb{R}^n \to \mathbb{R}$ with q pieces can be represented by a ReLU network whose number of layers l, maximum width w, and number of hidden neurons h satisfy

$$l \le 2 \left\lceil \log_2 q \right\rceil + 1,\tag{1}$$

$$w \le \mathbb{I}\left[q > 1\right] \left[\frac{3q}{2}\right] q,\tag{2}$$

 $h \le \left(3 \cdot 2^{\lceil \log_2 q \rceil} + 2 \lceil \log_2 q \rceil - 3\right)q + 3 \cdot 2^{\lceil \log_2 q \rceil} - 2 \lceil \log_2 q \rceil - 3.$ (3)

Furthermore, Algorithm 1 finds such a network in poly (n, q, L)time where L is the number of bits required to represent every entry of the rational matrix \mathbf{A}_i in the polyhedron representation $\{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}_i \mathbf{x} \leq \mathbf{b}_i\}$ of the piece \mathcal{X}_i for every $i \in [q]$.

Figure 1: Any CPWL function $\mathbb{R}^n \to \mathbb{R}$ with q pieces or k distinct linear components can be exactly represented by a ReLU network with at most h hidden neurons. The upper bounds (red) in [1] are substantially tighter than existing bounds in the literature, showing that any CPWL function can be exactly realized by a ReLU network at a much lower cost.

Algorithm 1 Find a ReLU network that computes a given CPWL function **Input:** A CPWL function p with pieces $\{\mathcal{X}_i\}_{i \in [q]}$ of \mathbb{R}^n . **Output:** A Pol U network a computing $q(\mathbf{x}) = p(\mathbf{x})$, $\forall \mathbf{x} \in \mathbb{D}^n$

Output: A ReLU network g computing $g(\mathbf{x}) = p(\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^n$. 1: $f_1, f_2, \dots, f_k \leftarrow$ Find all distinct linear components of p

1: $J_1, J_2, \cdots, J_k \leftarrow \text{Find an usual}$

2: **for** $i = 1, 2, \cdots, q$ **do**

5: If
$$f_i(\mathbf{x}) \ge p(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}_i$$
 then

$$: \qquad \mathbf{II} \ J_j(\mathbf{X}) \ge p(\mathbf{X}), \ \forall \mathbf{X} \in \mathcal{A}$$

$$\mathcal{A}_i \leftarrow \mathcal{A}_i igcup \{j\}$$

9: $v_i \leftarrow A$ network representing the min-affine function of $\{f_m\}_{m \in A_i}$ 10: **end for**

11: $v \leftarrow \text{Combine ReLU networks } v_1, v_2, \cdots, v_q \text{ in parallel}$

12: $u \leftarrow A$ ReLU network computing the maximum of q elements

13: $g \leftarrow A \text{ ReLU}$ network computing the composition $u \circ v$

2 Optimization of deep residual networks

\rightarrow G ₁ v ₁ W ₁	\mathbf{G}_2 \mathbf{W}_2	$\overrightarrow{\mathbf{G}_L} \overrightarrow{\mathbf{v}_L} \overrightarrow{\mathbf{W}_L}$	$\underbrace{ \begin{array}{c} \text{Nonlinear} \\ \uparrow \end{array} } \underbrace{ \mathbf{W}_{L+1} } \hat{\mathbf{y}}_{\text{ResNet}} \end{array} $
$\mathbf{x} \xrightarrow{\mathbf{v}_0} \mathbf{W}_0 \xrightarrow{\mathbf{v}_0} \mathbf{v}_0$	$-\frac{1}{\mathbf{x}_1}$	$\stackrel{\checkmark}{+} \cdots \stackrel{\checkmark}{\underset{\mathbf{X}_{L-1}}{\overset{\checkmark}}} \stackrel{\checkmark}{+}$	$\xrightarrow{\mathbf{X}_L} \mathbf{W}_{L+1} \rightarrow \hat{\mathbf{y}}_{\text{ResNEst}}$

Figure 2: A generic vector-valued ResNEst that has a chain of *L* residual blocks. Different from the standard ResNet architecture, our ResNEst architecture drops nonlinearities at \mathbf{x}_L so as to reveal a linear relationship between the output $\hat{\mathbf{y}}_{\text{ResNEst}}$ and the features $\mathbf{v}_0, \mathbf{v}_1, \cdots, \mathbf{v}_L$.

Figure 3: The proposed augmented ResNEst or A-ResNEst.

Because the ResNEst now reveals a linear relationship between the output and the features, we have:

$$\hat{\mathbf{y}}_{L-\text{ResNEst}}\left(\mathbf{x}\right) = \mathbf{W}_{L+1} \sum_{i=0}^{L} \mathbf{W}_{i} \mathbf{v}_{i}\left(\mathbf{x}\right), \qquad (4)$$

$$\mathbf{v}_{i}(\mathbf{x}) = \mathbf{G}_{i}(\mathbf{x}_{i-1};\boldsymbol{\theta}_{i}) = \mathbf{G}_{i}\left(\sum_{j=0}^{i-1} \mathbf{W}_{j}\mathbf{v}_{j};\boldsymbol{\theta}_{i}\right).$$
 (5)

We propose to utilize the basis function modeling point of view in the ResNEst and analyze the following ERM problem:

$$(\mathbf{P}_{\boldsymbol{\phi}}) \min_{\mathbf{W}_{L},\mathbf{W}_{L+1}} \mathcal{R}(\mathbf{W}_{L},\mathbf{W}_{L+1};\boldsymbol{\phi})$$
(6)

where $\mathcal{R}(\mathbf{W}_L, \mathbf{W}_{L+1}; \boldsymbol{\phi}) = \frac{1}{N} \sum_{n=1}^{N} \ell\left(\hat{\mathbf{y}}_{L-\text{ResNEst}}^{\boldsymbol{\phi}}(\mathbf{x}^n), \mathbf{y}^n\right)$ for any fixed feature finding weights $\boldsymbol{\phi}$. For A-ResNEst, we put

$$(\mathbf{PA}_{\phi}) \min_{\mathbf{H}_{0},\cdots,\mathbf{H}_{L}} \mathcal{A}(\mathbf{H}_{0},\cdots,\mathbf{H}_{L};\phi)$$
(7)

where $\mathcal{A}(\mathbf{H}_0, \cdots, \mathbf{H}_L; \boldsymbol{\phi}) = \frac{1}{N} \sum_{n=1}^N \ell\left(\hat{\mathbf{y}}_{L-\text{A-ResNEst}}^{\boldsymbol{\phi}}(\mathbf{x}^n), \mathbf{y}^n\right).$

• M is the output dimension of \mathbf{W}_0 (expansion factor).

• N_o is the output dimension of the network.

Theorem 2 (Theorem 1 of [2]). If the loss function $\ell(\hat{\mathbf{y}}, \mathbf{y})$ is differentiable and convex in $\hat{\mathbf{y}}$ for any \mathbf{y} and $M \ge N_o$, then the following two properties are true in (P_{ϕ}) under any ϕ such that the linear inverse problem $\mathbf{x}_{L-1} = \sum_{i=0}^{L-1} \mathbf{W}_i \mathbf{v}_i$ has a unique solution: (a) every critical point with full rank \mathbf{W}_{L+1} is a global minimizer, (b) $\mathcal{R}(\mathbf{W}_L^*, \mathbf{W}_{L+1}^*; \phi) = \mathcal{A}(\mathbf{H}_0^*, \cdots, \mathbf{H}_L^*; \phi)$ for every local minimizer $(\mathbf{W}_L^*, \mathbf{W}_{L+1}^*)$ of (P_{ϕ}) .

3 Uncertainty in supervised speech enhancement

$\rightarrow \underline{\text{STFT}} \rightarrow y \xrightarrow{f_{\theta}} \underbrace{f_{\theta}}_{f_{\phi}}$	$ \hat{\mu}_{\theta}(y) \longrightarrow \underline{\text{iSTFT}} \longrightarrow \widehat{L}_{\phi}(y) \longrightarrow Cov. \text{ regularization} \longrightarrow \widehat{L}_{\phi}^{\delta}(y) $
\longrightarrow STFT $\longrightarrow x \longrightarrow$	$\underline{NLL loss} \leftarrow \underline{Uncertainty weighting} $

Figure 4: We augment a speech enhancement model f_{θ} with a temporary submodel f_{ϕ} to estimate heteroscedastic uncertainty during training [3].

The problem of maximum likelihood is equivalent to minimizing the empirical risk using the multivariate Gaussian NLL loss

 $\ell_{x,y}^{\text{Full}}(\psi) = \left[x - \hat{\mu}_{\theta}(y)\right]^{\mathsf{T}} \hat{\Sigma}_{\phi}^{-1}(y) \left[x - \hat{\mu}_{\theta}(y)\right] + \log \det \hat{\Sigma}_{\phi}(y).$ (8)

The number of elements in $\hat{\Sigma}_{\phi}(y)$ is $4T^2F^2$, leading to exceedingly high training complexity. How can we reduce the complex-

⁺⊠ kuc0290ucsd.edu

ity and make the maximum likelihood tractable?

$$\ell_{x,y}^{\text{Diagonal}}(\psi) = \sum_{t,f} \sum_{k \in \{r,i\}} \left[\frac{x_k^{t,f} - \hat{\mu}_{k;\theta}^{t,f}(y)}{\hat{\sigma}_{k;\phi}^{t,f}(y)} \right]^2 + 2\log \hat{\sigma}_{k;\phi}^{t,f}(y).$$
(9)

$$\ell_{x,y}^{\text{Block}}(\psi) = \sum_{t,f} \underbrace{d_{\theta,x}^{t,f}(y)^{\mathsf{T}} \left[\hat{\Sigma}_{\phi}^{t,f}(y)\right]^{-1} d_{\theta,x}^{t,f}(y) + \log t_{\phi}^{t,f}(y)}_{z_{x,y}^{t,f}(\psi)}.$$
 (10)

Covariance regularization. Let $\delta > 0$ be the lower bound of the eigenvalues of the Cholesy factor of the covariance matrix.

$$\left[\hat{L}_{\phi}^{\delta}(y)\right]_{mm} = \max\left\{\left[\hat{L}_{\phi}(y)\right]_{mm}, \delta\right\}.$$
 (11)

Uncertainty weighting. Let $\beta = 0.5$ and the loss function be a weighted average where the weight of a loss component depends on the *minimum eigenvalue* of the covariance matrix, i.e.,

$$\ell_{x,y}^{\beta\text{-Block}}(\psi) = \sum_{t,f} \lambda_{\min} \left[\hat{\Sigma}_{\phi}^{t,f}(y) \right]^{\beta} z_{x,y}^{t,f}(\psi).$$
(12)

	W	/B-PES	Q	STOI (%)		SI-SDR (dB)			NORESQA-MOS			
SNR (dB)	-5	0	5	-5	0	5	-5	0	5	-5	0	5
Unprocessed	1.11	1.15	1.24	69.5	77.8	85.2	-5.00	0.01	5.01	2.32	2.36	2.45
MAE	1.50	1.76	2.09	84.4	90.4	93.9	9.83	12.63	15.02	2.77	3.27	3.65
MSE	1.63	1.94	2.29	85.1	90.6	94.0	10.24	13.21	15.97	2.86	3.52	4.02
SI-SDR	1.71	2.04	2.42	86.5	91.5	94.6	10.96	13.92	16.80	3.05	3.65	4.20
NLL ℓ^{Diagonal}	1.74	2.08	2.48	86.2	91.3	94.6	9.83	12.55	15.01	3.14	3.77	4.25
NLL ℓ^{Block}	1.75	2.10	2.50	86.7	91.8	94.9	10.22	13.15	15.99	3.23	3.89	4.35

Figure 5: The NLL using a block diagonal covariance with suitable δ and β outperforms the MAE, MSE, and SI-SDR. The DNS dataset is used. We adopt the GCRN as f_{θ} for investigation. f_{ϕ} is an additional decoder that takes the output of the in-between LSTM of the GCRN as input.

4 DNN based direction of arrival estimation

Let $\tilde{\mathbf{y}}(t, f) = \mathbf{w}(t, f) \odot \mathbf{y}(t, f)$ be a filtered snapshot. We propose a criterion that normalizes the filtered snapshot [4].

$$\max_{\theta} \quad \sum_{f} \mathbf{v}^{\mathsf{H}}(\theta, f) \sum_{t} \frac{\tilde{\mathbf{y}}(t, f) \tilde{\mathbf{y}}^{\mathsf{H}}(t, f)}{\|\mathbf{y}(t, f)\|_{2}^{2}} \mathbf{v}(\theta, f).$$
(13)

To find the time-frequency weights $\mathbf{w}(t, f)$, we first use a U-Net (0.67M params) to predict the ideal ratio mask \mathbf{G}_m on each sensor and then apply a post-processing $\mathbf{W}_m = q_m (\mathbf{G}_1, \mathbf{G}_2, \cdots, \mathbf{G}_M)$.

Figure 6: MAE in degrees vs. SIR. $RT_{60} = 0.3s$ and SNR = 20 dB.

(a) -6 dB SIR.

Figure 7: Accuracy vs. number of snapshots. $RT_{60} = 0.3s$ and SNR = 20 dB.

(b) 0 dB SIR.

5 Adaptive filters and feedback cancellation

We minimize the sum of the squared error in each subband with a sparsity penalty term. We propose the following cost function:

$$J(\mathbf{s}) = \sum_{i=1}^{M} |e_i(n)|^2 + \tau \|\mathbf{s}\|_{\mathbf{W}^{-1}(n)}^2$$
(14)

(c) + 6 dB SIR.

where $e_i(n) = \mathbf{h}_i^T \mathbf{e}(n) = \mathbf{h}_i^T [\mathbf{d}(n) - \mathbf{U}^T(n)\mathbf{s}]$ is the i-th subband error and $\mathbf{s} \in \mathbb{R}^L$ is the coefficients of the adaptive filter, leading to the generalized proportionate-type normalized subband adaptive filter (GPtNSAF) [5]: $\mathbf{s}(n+1) = \mathbf{s}(n) + \mu \mathbf{g}(n)$ where

$$\mathbf{g}(n) = \mathbf{W}(n)\mathbf{U}_b(n) \left[\delta \mathbf{I}_M + \mathbf{U}_b^T(n)\mathbf{W}(n)\mathbf{U}_b(n)\right]^{-1} \mathbf{e}_b(n).$$
(15)

(a) System identification.

(b) Feedback cancellation.

Figure 8: The GPtNSAF and the feedback cancellation framework [6]. We put $\mathbf{W}(n) = \text{diag}\{w_1(n), \cdots, w_L(n)\}$ where

$$w_i(n) = \left(|s_i(n)| + c \right)^{2-p}, i = 1, 2, \cdots, L,$$
 (16)

-	n-2	NI MS	NSAF	ΛΡΛ	
		M = 1	$M>1, \mathbf{H}\neq \mathbf{I}$	$M > 1, \mathbf{H} = \mathbf{I}$	
[].	[.0, 2.0], c >	0 for pro	moting different	degrees of spars	1ty

p=2	NLMS	NSAF	APA
2 > p > 0	PtNLMS	PtNSAF	PtAPA

Table 1: Special cases of GPtNSAF (or sparsity-promoting NSAF).

References

- [1] K.-L. Chen, H. Garudadri, and B. D. Rao, "Improved bounds on neural complexity for representing piecewise linear functions," in *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- [2] K.-L. Chen, C.-H. Lee, H. Garudadri, and B. D. Rao, "ResNEsts and DenseNEsts: Blockbased DNN models with improved representation guarantees," in *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- [3] K.-L. Chen, D. D. E. Wong, K. Tan, B. Xu, A. Kumar, and V. K. Ithapu, "Leveraging heteroscedastic uncertainty in learning complex spectral mapping for single-channel speech enhancement," in *International Conference on Acoustics, Speech and Signal Processing* (ICASSP). IEEE, 2023.
- [4] K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, "A DNN based normalized timefrequency weighted criterion for robust wideband DoA estimation," in *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2023.
- [5] K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, "A generalized proportionate-type normalized subband adaptive filter," in *Asilomar Conference on Signals, Systems, and Computers*. IEEE, 2019.
- [6] K.-L. Chen, C.-H. Lee, B. D. Rao, and H. Garudadri, "Jointly leveraging decorrelation and sparsity for improved feedback cancellation in hearing aids," in *European Signal Process-ing Conference (EUSIPCO)*, 2020.