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1 Complexity of deep ReLU networks

Theorem 1 (Theorem 1 of [1]). Any continuous piecewise linear
(CPWL) function p : Rn → R with q pieces can be represented
by a ReLU network whose number of layers l, maximum width w,
and number of hidden neurons h satisfy

l ≤ 2 ⌈log2 q⌉ + 1, (1)

w ≤ I [q > 1]

⌈
3q

2

⌉
q, (2)

h ≤
(
3 · 2⌈log2 q⌉ + 2 ⌈log2 q⌉ − 3

)
q + 3 · 2⌈log2 q⌉ − 2 ⌈log2 q⌉ − 3.

(3)

Furthermore, Algorithm 1 finds such a network in poly (n, q, L)
time where L is the number of bits required to represent every
entry of the rational matrix Ai in the polyhedron representation
{x ∈ Rn|Aix ≤ bi} of the piece Xi for every i ∈ [q].
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Figure 1: Any CPWL function Rn → R with q pieces or k distinct linear
components can be exactly represented by a ReLU network with at most h
hidden neurons. The upper bounds (red) in [1] are substantially tighter than
existing bounds in the literature, showing that any CPWL function can be ex-
actly realized by a ReLU network at a much lower cost.

Algorithm 1 Find a ReLU network that computes a given CPWL function
Input: A CPWL function p with pieces {Xi}i∈[q] of Rn.
Output: A ReLU network g computing g(x) = p(x),∀x ∈ Rn.

1: f1, f2, · · · , fk ← Find all distinct linear components of p
2: for i = 1, 2, · · · , q do
3: Ai← ∅
4: for j = 1, 2 · · · , k do
5: if fj(x) ≥ p(x),∀x ∈ Xi then
6: Ai← Ai

⋃{j}
7: end if
8: end for
9: vi← A network representing the min-affine function of {fm}m∈Ai

10: end for
11: v ← Combine ReLU networks v1, v2, · · · , vq in parallel
12: u← A ReLU network computing the maximum of q elements
13: g ← A ReLU network computing the composition u ◦ v

2 Optimization of deep residual networks
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Figure 2: A generic vector-valued ResNEst that has a chain of L residual
blocks. Different from the standard ResNet architecture, our ResNEst archi-
tecture drops nonlinearities at xL so as to reveal a linear relationship between
the output ŷResNEst and the features v0,v1, · · · ,vL.
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Figure 3: The proposed augmented ResNEst or A-ResNEst.

Because the ResNEst now reveals a linear relationship between
the output and the features, we have:

ŷL-ResNEst (x) = WL+1

L∑
i=0

Wivi (x) , (4)

vi (x) = Gi (xi−1;θi) = Gi

 i−1∑
j=0

Wjvj;θi

 . (5)

We propose to utilize the basis function modeling point of view
in the ResNEst and analyze the following ERM problem:

(Pϕ) min
WL,WL+1

R (WL,WL+1;ϕ) (6)

where R (WL,WL+1;ϕ) = 1
N

∑N
n=1 ℓ

(
ŷϕ
L-ResNEst (x

n) ,yn
)

for
any fixed feature finding weights ϕ. For A-ResNEst, we put

(PAϕ) min
H0,··· ,HL

A (H0, · · · ,HL;ϕ) (7)

where A (H0, · · · ,HL;ϕ) =
1
N

∑N
n=1 ℓ

(
ŷϕ
L-A-ResNEst (x

n) ,yn
)

.

•M is the output dimension of W0 (expansion factor).
•No is the output dimension of the network.

Theorem 2 (Theorem 1 of [2]). If the loss function ℓ(ŷ,y) is dif-
ferentiable and convex in ŷ for any y and M ≥ No, then the
following two properties are true in (Pϕ) under any ϕ such that
the linear inverse problem xL−1 =

∑L−1
i=0 Wivi has a unique so-

lution: (a) every critical point with full rank WL+1 is a global
minimizer, (b) R

(
W∗

L,W
∗
L+1;ϕ

)
= A

(
H∗0, · · · ,H∗L;ϕ

)
for ev-

ery local minimizer
(
W∗

L,W
∗
L+1

)
of (Pϕ).

3 Uncertainty in supervised speech enhancement

STFT fθ

fϕ

µ̂θ(y)

L̂ϕ(y) Cov. regularization L̂δϕ(y)

Noisy

Clean

Enhanced

STFT x

y
fψ

Uncertainty weightingNLL loss

iSTFT

Figure 4: We augment a speech enhancement model fθ with a temporary sub-
model fϕ to estimate heteroscedastic uncertainty during training [3].

The problem of maximum likelihood is equivalent to minimizing
the empirical risk using the multivariate Gaussian NLL loss

ℓFull
x,y (ψ) =

[
x− µ̂θ(y)

]T
Σ̂−1ϕ (y)

[
x− µ̂θ(y)

]
+ log det Σ̂ϕ(y). (8)

The number of elements in Σ̂ϕ(y) is 4T 2F 2, leading to exceed-
ingly high training complexity. How can we reduce the complex-

ity and make the maximum likelihood tractable?

ℓDiagonal
x,y (ψ) =

∑
t,f

∑
k∈{r,i}

xt,fk − µ̂t,fk;θ(y)
σ̂t,fk;ϕ(y)

2

+ 2 log σ̂t,fk;ϕ(y). (9)

ℓBlock
x,y (ψ) =

∑
t,f

dt,fθ,x(y)
T
[
Σ̂t,fϕ (y)

]−1
dt,fθ,x(y) + log tt,fϕ (y)︸ ︷︷ ︸

zt,fx,y(ψ)

. (10)

Covariance regularization. Let δ > 0 be the lower bound of
the eigenvalues of the Cholesy factor of the covariance matrix.[

L̂δϕ(y)
]
mm

= max

{[
L̂ϕ(y)

]
mm

, δ

}
. (11)

Uncertainty weighting. Let β = 0.5 and the loss function be a
weighted average where the weight of a loss component depends
on the minimum eigenvalue of the covariance matrix, i.e.,

ℓβ-Block
x,y (ψ) =

∑
t,f

λmin

[
Σ̂t,fϕ (y)

]β
zt,fx,y(ψ). (12)

WB-PESQ STOI (%) SI-SDR (dB) NORESQA-MOS
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5

Unprocessed 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01 2.32 2.36 2.45

MAE 1.50 1.76 2.09 84.4 90.4 93.9 9.83 12.63 15.02 2.77 3.27 3.65
MSE 1.63 1.94 2.29 85.1 90.6 94.0 10.24 13.21 15.97 2.86 3.52 4.02

SI-SDR 1.71 2.04 2.42 86.5 91.5 94.6 10.96 13.92 16.80 3.05 3.65 4.20

NLL ℓDiagonal 1.74 2.08 2.48 86.2 91.3 94.6 9.83 12.55 15.01 3.14 3.77 4.25
NLL ℓBlock 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99 3.23 3.89 4.35

Figure 5: The NLL using a block diagonal covariance with suitable δ and β
outperforms the MAE, MSE, and SI-SDR. The DNS dataset is used. We adopt
the GCRN as fθ for investigation. fϕ is an additional decoder that takes the
output of the in-between LSTM of the GCRN as input.

4 DNN based direction of arrival estimation

Let ỹ(t, f ) = w(t, f )⊙y(t, f ) be a filtered snapshot. We propose
a criterion that normalizes the filtered snapshot [4].

max
θ

∑
f

vH(θ, f )
∑
t

ỹ(t, f )ỹH(t, f )

∥y(t, f )∥22
v(θ, f ). (13)

To find the time-frequency weights w(t, f ), we first use a U-Net
(0.67M params) to predict the ideal ratio mask Gm on each sensor
and then apply a post-processing Wm = qm (G1,G2, · · · ,GM).
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(a) Proposed.
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(b) SRP.
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(c) MUSIC.
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(d) Principal vector.

Figure 6: MAE in degrees vs. SIR. RT60 = 0.3s and SNR = 20 dB.
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(b) 0 dB SIR.
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Figure 7: Accuracy vs. number of snapshots. RT60 = 0.3s and SNR = 20 dB.

5 Adaptive filters and feedback cancellation

We minimize the sum of the squared error in each subband with
a sparsity penalty term. We propose the following cost function:

J(s) =
M∑
i=1

|ei(n)|2 + τ∥s∥2W−1(n) (14)

where ei(n) = hTi e(n) = hTi
[
d(n)−UT (n)s

]
is the i-th subband

error and s ∈ RL is the coefficients of the adaptive filter, leading
to the generalized proportionate-type normalized subband adap-
tive filter (GPtNSAF) [5]: s(n + 1) = s(n) + µg(n) where

g(n) = W(n)Ub(n)
[
δIM +UT

b (n)W(n)Ub(n)
]−1

eb(n). (15)
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Figure 8: The GPtNSAF and the feedback cancellation framework [6].

We put W(n) = diag{w1(n), · · · , wL(n)} where

wi(n) =
(
|si(n)| + c

)2−p
, i = 1, 2, · · · , L, (16)

p ∈ [1.0, 2.0], c > 0 for promoting different degrees of sparsity.

M = 1 M > 1,H ̸= I M > 1,H = I

p = 2 NLMS NSAF APA

2 > p > 0 PtNLMS PtNSAF PtAPA

Table 1: Special cases of GPtNSAF (or sparsity-promoting NSAF).
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