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Single-channel speech enhancement

Speech enhancement (SE) aims at improving speech quality and intelligibility
via recovering clean speech components from noisy recordings.

SE model fθ(y)

Noisy speech y Clean speech x

It is an essential part of many applications such as teleconferencing (Hsu
et al., 2022), hearing aids (Pisha et al., 2019), and augmented hearing
systems (Pisha et al., 2018).

Modern SE relies on deep learning (Lu et al., 2013; Xu et al., 2013, 2014;
Wang and Chen, 2018; Tan and Wang, 2018; Pandey and Wang, 2019; Tan
and Wang, 2019; Hu et al., 2020; Hao et al., 2021; Li et al., 2022).
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The conventional learning paradigm and popular losses

Observation 1
Most SE models are trained without leveraging uncertainty. They assume the
uncertainty is “homoscedastic.”

For example, the following loss functions

Mean squared error (MSE)

Mean absolute error (MAE)

are widely used in training SE models.

Question 1
What are the assumptions behind these loss functions?

Question 2
Can SE models achieve better performance if the assumptions are weakened?
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Our contributions

It was reported that minimizing a Gaussian NLL alone leads to inferior SE
performance (Fang et al., 2022).

Contribution 1
We propose a new uncertainty-assisted learning framework for SE and overcome
the optimization difficulty that arises in the learning process.

Contribution 2
We show that, at no extra cost in terms of compute, memory, and
parameters, directly minimizing a Gaussian NLL yields significantly better SE
performance than minimizing a conventional loss such as the MAE or MSE, and
slightly better SE performance than the SI-SDR loss.

This is the first successful study that achieves improved perceptual metric
performance by directly using heteroscedastic uncertainty for SE.
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Probabilistic models and assumptions

Let the received signal in the STFT domain be y t,f
r + iy t,f

i ∈ C for all (t, f )
with the time frame index t ∈ {1, 2, · · · ,T} and frequency bin index
f ∈ {1, 2, · · · ,F}. Let y ∈ R2TF be the vector representing every real part
and imaginary part of the STFT representation of the received signal.

We assume the clean signal is corrupted by additive noise, i.e.,

y = x + v (1)

where x and v are the clean and noise random vectors, respectively.

We assume a multivariate Gaussian model

p
(
x |y ;ψ

)
=

exp
(
− 1

2

[
x − µ̂θ(y)

]T
Σ̂−1
ϕ (y)

[
x − µ̂θ(y)

])√
(2π)n det Σ̂ϕ(y)

(2)

where its conditional mean µ̂θ(y) and covariance Σ̂ϕ(y) are directly learned
from a dataset by a conditional density model fψ.
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The proposed uncertainty-assisted learning framework

STFT fθ

fϕ

µ̂θ(y)

L̂ϕ(y) Cov. regularization L̂δϕ(y)

Noisy

Clean

Enhanced

STFT x

y
fψ

Uncertainty weightingNLL loss

iSTFT

Figure: We augment an SE model fθ with a temporary submodel fϕ to estimate
heteroscedastic uncertainty during training. The augmented model fψ is defined by µ̂θ(y)

vec
[
L̂ϕ(y)

] =

[
fθ(y)
fϕ(ỹ)

]
= fψ(y). (4)

fϕ can be removed at inference time.

Question 3
How to train the augmented model fψ?
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The multivariate Gaussian negative log-likelihood function

Given a dataset {xn, yn}Nn=1 containing pairs of target clean signal xn and received

noisy signal yn, we find the conditional mean µ̂θ(y) and covariance Σ̂ϕ(y)
maximizing the likelihood of the joint probability distribution

p(x1, x2, · · · , xN |y1, y2, · · · , yN ;ψ) =
N∏

n=1

p
(
xn|yn;ψ

)
(5)

where we assume the data points are independent and identically distributed.

The maximization problem can be converted into minimizing the empirical
risk using the following multivariate Gaussian NLL loss

ℓFullx,y (ψ) =
[
x − µ̂θ(y)

]T
Σ̂−1
ϕ (y)

[
x − µ̂θ(y)

]
+ log det Σ̂ϕ(y). (6)

The number of elements in Σ̂ϕ(y) is 4T
2F 2, leading to exceedingly high

training complexity.

Question 4
How can we reduce the complexity and make the maximum likelihood tractable?

ICASSP 2023 Leveraging Heteroscedastic Uncertainty in Learning Complex Spectral Mapping for Single-channel Speech Enhancement 9 / 21



Homoscedastic uncertainty: An MSE loss

If the covariance Σ̂ϕ(y) is assumed to be a scalar matrix

Σ̂ϕ(y) = cI (7)

where c is a scalar constant and I is an identity matrix, then we actually assume
the uncertainty is homoscedastic.

The log-determinant term in (6) becomes a constant.

The affinely transformed squared error reduces to an MSE.

In this case, minimizing the Gaussian NLL is equivalent to the empirical risk
minimization using an MSE loss

ℓMSE
x,y (θ) = ∥x − µ̂θ(y)∥22. (8)

The submodel fϕ is not needed for an MSE loss so the optimization is
performed only on θ.

Many SE works fall into this category, e.g., (Lu et al., 2013; Xu et al., 2013;
Wang and Chen, 2018; Pandey and Wang, 2019; Tan and Wang, 2019).
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Heteroscedastic uncertainty: A diagonal case

If every random variable in the random vector drawn from p(x |y) is assumed to be
uncorrelated with the others, then the covariance reduces to a diagonal matrix.

The Gaussian NLL ignores uncertainties across different T-F bins and
between real and imaginary parts, leading to

ℓDiagonal
x,y (ψ) =

∑
t,f

∑
k∈{r ,i}

x t,fk − µ̂t,f
k;θ(y)

σ̂t,f
k;ϕ(y)

2

+ 2 log σ̂t,f
k;ϕ(y) (9)

The number of output units of the submodel fϕ is 2TF .

(9) allows the real and imaginary parts to have their own variance.

This is a weaker assumption compared to the circularly symmetric complex
Gaussian assumption used by Fang et al. (2022).

Question 5
Can we further weaken the assumption?

ICASSP 2023 Leveraging Heteroscedastic Uncertainty in Learning Complex Spectral Mapping for Single-channel Speech Enhancement 11 / 21



Heteroscedastic uncertainty: A block diagonal case

We relax the uncorrelated assumption imposed between every real and imaginary
part to take more uncertainty into account.

The conditional covariance becomes a block diagonal matrix consisting of
2-by-2 blocks, giving the Gaussian NLL loss

ℓBlockx,y (ψ) =
∑
t,f

d t,f
θ,x(y)

T
[
Σ̂t,f
ϕ (y)

]−1

d t,f
θ,x(y) + log tt,fϕ (y)︸ ︷︷ ︸

z t,fx,y (ψ)

(10)

where

tt,fθ (y) =
[
σ̂t,f
r ;ϕ(y)σ̂

t,f
i ;ϕ(y)

]2
−
[
σ̂t,f
ri ;ϕ(y)

]2
, (11)

d t,f
θ (y) =

[
x t,fr − µ̂t,f

r ;θ(y)

x t,fi − µ̂t,f
i ;θ (y)

]
, Σ̂t,f

ϕ (y) =


[
σ̂t,f
r ;ϕ(y)

]2
σ̂t,f
ri ;ϕ(y)

σ̂t,f
ri ;ϕ(y)

[
σ̂t,f
i ;ϕ(y)

]2
 . (12)

The number of output units of the submodel fϕ is 3TF .

The inference-time complexity of the SE model fθ remains the same as
using an MSE loss or uncorrelated Gaussian NLL loss.
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The undersampling problem

Taking the uncorrelated Gaussian NLL for example, the expected first-order
derivative of ℓDigonal

x,y with respect to µ̂t,f
r ;θ can be approximated by

Ex,y

[
∂ℓDiagonal

x,y

∂µ̂t,f
r ;θ

]
≈ 2

N

N∑
n=1

µ̂t,f
r ;θ(yn)− x t,fn,r[
σ̂t,f
r ;ϕ(yn)

]2 . (13)

Given the unconstrained variance in the denominator, a larger variance makes
the model fθ harder to converge to a clean component compared to a loss
component with a smaller variance.

This undersampling issue was pointed out in a recent work by Seitzer et al.
(2021), in which they proposed the β-NLL to mitigate undersampling.

Question 6
Can we generalize β-NLL to the multivariate case?
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Covariance regularization

STFT fθ

fϕ

µ̂θ(y)

L̂ϕ(y) Cov. regularization L̂δϕ(y)

Noisy

Clean

Enhanced

STFT x

y
fψ

Uncertainty weightingNLL loss

iSTFT

Let δ > 0 be the lower bound of the eigenvalues of the Cholesy factor of the
covariance matrix. The output of fϕ is modified by[

L̂δϕ(y)
]
mm

= max

{[
L̂ϕ(y)

]
mm

, δ

}
(14)

for all m ∈ {1, 2, · · · , 2TF} where L̂δϕ(y) is now the regularized output of fϕ.
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Uncertainty weighting

STFT fθ
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To extend the β-NLL to a multivariate Gaussian NLL, we propose an uncertainty
weighting approach, which assigns a larger weight for a loss component according
to the minimum eigenvalue of the covariance matrix, leading to

ℓβ-Blockx,y (ψ) =
∑
t,f

λmin

[
Σ̂t,f
ϕ (y)

]β
z t,fx,y (ψ) (15)

where λmin [·] gives the minimum eigenvalue which is treated as a constant.

When β = 0, ℓβ-Blockx,y (ψ) reduces to the original ℓBlockx,y (ψ).

We pick β = 0.5.
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Experimental setup

The DNS dataset (Reddy et al., 2021).

We adopt the gated convolutional recurrent network (GCRN) (Tan and
Wang, 2019) as the SE model fθ for investigation.

Given that the original GCRN has an encoder-decoder architecture with long
short-term memory (LSTM) in between, we formulate the temporary
submodel fϕ as an additional decoder that takes the output of the in-between
LSTM as input.

The augmented model fψ formed by these two models is a GCRN with two
distinct decoders.
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Calibration of the probabilistic model

Question 7
Is it reasonable to assume the Gaussian probabilistic model?
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Figure: The quantile-quantile (Q-Q) plots suggest that the predictive Gaussian
distributions reasonably capture the populations of the clean speech.
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Experimental results

δ β WB-PESQ STOI (%) SI-SDR (dB) NORESQA-MOS
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5

Unprocessed n/a 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01 2.32 2.36 2.45

MAE 1.50 1.76 2.09 84.4 90.4 93.9 9.83 12.63 15.02 2.77 3.27 3.65
MSE n/a 1.63 1.94 2.29 85.1 90.6 94.0 10.24 13.21 15.97 2.86 3.52 4.02

SI-SDR 1.71 2.04 2.42 86.5 91.5 94.6 10.96 13.92 16.80 3.05 3.65 4.20

Gaussian NLL:
Diagonal Σ̂ϕ

0.0001 0 1.11 1.18 1.28 69.6 77.3 83.0 0.79 4.37 7.48 1.95 2.16 2.40
0.01 0 1.59 1.88 2.28 83.5 89.7 93.7 7.65 10.61 13.31 2.97 3.60 4.14
0.01 0.5 1.74 2.08 2.48 86.2 91.3 94.6 9.83 12.55 15.01 3.14 3.77 4.25

Gaussian NLL:
Block diagonal Σ̂ϕ

0.0001 0 1.07 1.08 1.11 59.4 66.5 72.0 -6.46 -4.20 -2.82 1.56 1.47 1.44
0.001 0 1.53 1.80 2.19 82.6 89.1 93.3 7.08 10.08 13.01 2.71 3.33 3.97
0.01 0 1.61 1.92 2.33 83.9 90.1 94.0 7.82 10.73 13.51 2.98 3.60 4.15
0.001 0.5 1.73 2.08 2.49 86.0 91.4 94.7 9.71 12.62 15.41 3.11 3.79 4.30
0.005 0.5 1.75 2.11 2.52 86.4 91.6 94.8 10.09 13.05 15.88 3.07 3.75 4.22
0.01 0.5 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99 3.23 3.89 4.35
0.05 0.5 1.72 2.08 2.49 86.3 91.6 94.8 10.12 13.09 15.86 2.96 3.63 4.15

Table: The methods of covariance regularization and uncertainty weighting effectively
improve perceptual metric performance of multivariate Gaussian NLLs.

The NLL using a block diagonal covariance with suitable δ and β
outperforms the MAE, MSE, and SI-SDR in terms of different metrics
(Manocha and Kumar, 2022).

ICASSP 2023 Leveraging Heteroscedastic Uncertainty in Learning Complex Spectral Mapping for Single-channel Speech Enhancement 19 / 21



A hybrid loss performs better than the best single-task loss

Let a hybrid loss be defined as

ℓHybrid = αℓβ-Block + (1− α)ℓSI-SDR (16)

with α = 0.99, δ = 0.01, and β = 0.5.

WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5

Unprocessed 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01
Best single-task 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99

Hybrid 1.77 2.14 2.53 86.9 91.9 94.9 10.62 13.58 16.30

Table: Performance evaluation of the hybrid loss defined by (16).
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