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Abstract

* We propose a new uncertainty-assisted learning frame-
work for speech enhancement (SE) and overcome the op-
timization difficulty that arises in the learning process.

* We show that, at no extra cost in terms of compute,
memory, and parameters, directly minimizing a Gaus-
sian negative log-likelihood (NLL) yields significantly bet-
ter SE performance than minimizing a conventional loss
such as the MAE or MSE, and slightly better SE perfor-
mance than the SI-SDR loss.

* This 1s the first successful study that achieves improved
perceptual metric performance by directly using het-
eroscedastic uncertainty for SE.

1 The conventional learning paradigm in SE
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Most SE models are trained without leveraging uncertainty. Loss
functions such as the mean squared error (MSE) and mean abso-
lute error (MAE) are widely used in SE.

Question 1. What are the assumptions behind these losses?

Question 2. Can SE models achieve better performance if the as-
sumptions are weakened?

2 Probabilistic models and assumptions

Deﬁnition 1. Let the received signal in the STFT domain be
yll + zyl e C for all (t, f) with the time frame index t €
{1,2,--- T} and frequency bin index f € {1,2,--- ,F}. Let
y € R*'F be the vector representing every real part and imagi-
nary part of the STF'T representation of the received signal.

Assumption 1. We assume a multivariate Gaussian model
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exp (—% z— fg(y)] X5 (y) [z - ue(y)})
\/(27T)n det f]¢(y)

where its conditional mean fig(y) and covariance Y4(y) are
learned from a dataset by a conditional density model f,.

Model 1. The conditional density model f, is defined by

(1)

p(x|y;v) =

fo(y)

vec {[A@(y)}

= = fu(y) (2)

where Y4(y)

Remark 1. /4 is a temporary submodel that can be removed at
inference time.

= lAlgb(y)lAL;(y) is the conditional covariance.

Question 3. How to train the augmented model f?
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Figure 1: We augment an SE model fy with a temporary submodel f; to esti-
mate heteroscedastic uncertainty during training.

> NLL 1osé — Uncertainty WeightingJ

Assumption 2. Given a dataset {x,,y,}._, containing pairs of
target clean signal x, and received noisy signal vy, the like-
lihood of the joint probability distribution is assumed to be

p(mla L2y + e 7£EN|y17 Y2, 5, YN, w) — Hfzv:lp ($n|yna w) '
3 Multivariate Gaussian NLL

The problem of maximum likelihood 1s equivalent to minimizing
the empirical risk using the multivariate Gaussian NLL loss

) = [z — fig(y)] 51 y) [&— fie(y)] +log det Sy(y). (3)

The number of elements in Y4(y) is 47°F2, leading to exceed-
ingly high training complexity.
Question 4. How can we reduce the complexity and make the
maximum likelihood tractable?

3.1 Homoscedastic uncertainty: An MSE loss

If the covariance Y4(y) is assumed to be a scalar matrix (1) =
cl where c 1s a scalar constant and / 1s an i1dentity matrix, then
we actually assume the uncertainty 1s homoscedastic.

* The log-determinant term in (3)) becomes a constant.

* The affinely transformed squared error reduces to an MSE.

e In this case, minimizing the Gaussian NLL 1s equivalent to the
empirical risk minimization using an MSE loss

lry (0) = llz — gy (4)

* The submodel [, is not needed for an MSE loss so the opti-
mization is performed only on 6.

3.2 Heteroscedastic uncertainty: A diagonal case

If every random variable in the random vector drawn from p(x|y)
1s assumed to be uncorrelated with the others, then the covariance
reduces to a diagonal matrix.

 The Gaussian NLL 1gnores uncertainties across different T-F
bins and between real and imaginary parts, leading to
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* The number of output units of the submodel f, is 27F".

ZDlagonal + 2log o ak (b( ). (5)

* The real and 1imaginary parts have their own variance.

* This 1s a weaker assumption compared to the circularly sym-
metric complex Gaussian assumption used by [1].

Question 5. Can we further weaken the assumption?
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3.3 Heteroscedastic uncertainty: A block diagonal case
We relax the uncorrelated assumption imposed between every
real and 1imaginary part to take more uncertainty into account.

* The conditional covariance becomes a block diagonal matrix
consisting of 2-by-2 blocks, giving the Gaussian NLL loss
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* The number of output units of the submodel f; is 3T'F'.

* The inference-time complexity of the SE model fy remains
the same as using an MSE loss.

4 On mitigating undersampling
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e A larger variance makes the model fy harder to converge to a
clean component.

e This undersampling 1ssue was pointed out in a recent work [2],
in which they proposed the S-NLL to mitigate undersampling.

Question 6. Can we generalize B3-NLL to the multivariate case?

4.1 Covariance regularization

Let 0 > 0 be the lower bound of the eigenvalues of the Cholesy
factor of the covariance matrix. The output of f, is modified by

[ii(y)} = max { {%(y)} 0 } (8)

for all m where ﬁg(y) is now the regularized output of f;.

4.2 Uncertainty weighting

To extend the 5-NLL to a multivariate Gaussian NLL, we propose
an uncertainty weighting approach, which assigns a larger weight
for a loss component according to the minimum eigenvalue of the
covariance matrix, leading to

SUMEY

where A\, |-| gives the minimum eigenvalue which is treated as
a constant. When § = 0, £7P°*(¢)) reduces to the original
(819K (1). We pick § = 0.5.
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S Experiments

The DNS dataset [3] is used. We adopt the GCRN [4] as fy for
investigation. f, is an additional decoder that takes the output of
the 1n- between LSTM of the GCRN as 1nput
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Figure 2: The quantile-quantile (Q-Q) plots suggest that the predictive Gaus-
sian distributions reasonably capture the populations of the clean speech.

) B WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5
Unprocessed n/a 1.11 1.15 124 | 695 778 852 | -5.00 0.01 5.01
0.0001 0 1.07 108 1.11 | 594 665 720 | -6.46 -420 -2.82
0.001 0 1.53 1.80 2.19 | 826 89.1 933 | 7.08 10.08 13.01
0.01 0 1.61 192 233 (839 90.1 940 | 7.82 10.73 13.51
NLL ¢Blok 0,001 0.5 1.73 208 249 | 86.0 914 947 | 971 1262 1541
0.005 0.5 175 211 252|864 91.6 948 | 10.09 13.05 15.88
0.01 0.5 175 210 250 | 86.7 91.8 949 | 10.22 13.15 15.99
0.05 0.5 172 208 249 | 8.3 91.6 948 | 10.12 13.09 15.86

Figure 3: The methods of covariance regularization and uncertainty weight-
ing effectively improve the perceptual metric performance of the NLL loss.

WB-PESQ STOI (%) SI-SDR (dB) NORESQA-MOS

SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5
Unprocessed 1.11 1.15 1.24 | 695 77.8 852 | -500 001 5.01 | 232 236 2.45
MAE 1.50 1.76 2.09 | 844 904 939 | 983 12.63 15.02 | 2.77 3.27 3.65
MSE 1.63 194 229 | 8.1 906 940 | 1024 13.21 1597 | 286 3.52 4.02
SI-SDR 1.71 2.04 242 | 8.5 915 946 | 1096 1392 16.80 | 3.05 3.65 4.20
NLL ¢Pagonal 174 208 248 | 862 91.3 94.6 | 9.83 1255 15.01 | 3.14 3.77 425
NLL ¢Block 175 2,10 2.50 | 86.7 91.8 949 | 1022 13.15 1599 | 3.23 3.89 4.35

Figure 4: The NLL using a block diagonal covariance with suitable 0 and (3
outperforms the MAE, MSE, and SI-SDR 1n terms of different metrics [JJ].

WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5
Unprocessed I.11 1.15 124 | 69.5 77.8 852 | -5.00 0.01 5.01
Best single-task 1.75 2.10 2.50 | 86.7 91.8 949 | 10.22 13.15 15.99
Hybrid 1.77 214 2.53 | 869 919 949 | 10.62 13.58 16.30
Figure 5: Evaluation of /ford — qpo-Block o (7 ) pSISDR where o = (0.99.
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