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Abstract

• We propose a new uncertainty-assisted learning frame-
work for speech enhancement (SE) and overcome the op-
timization difficulty that arises in the learning process.

• We show that, at no extra cost in terms of compute,
memory, and parameters, directly minimizing a Gaus-
sian negative log-likelihood (NLL) yields significantly bet-
ter SE performance than minimizing a conventional loss
such as the MAE or MSE, and slightly better SE perfor-
mance than the SI-SDR loss.

• This is the first successful study that achieves improved
perceptual metric performance by directly using het-
eroscedastic uncertainty for SE.

1 The conventional learning paradigm in SE

SE model fθ(y)
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Most SE models are trained without leveraging uncertainty. Loss
functions such as the mean squared error (MSE) and mean abso-
lute error (MAE) are widely used in SE.

Question 1. What are the assumptions behind these losses?

Question 2. Can SE models achieve better performance if the as-
sumptions are weakened?

2 Probabilistic models and assumptions

Definition 1. Let the received signal in the STFT domain be
yt,fr + iyt,fi ∈ C for all (t, f ) with the time frame index t ∈
{1, 2, · · · , T} and frequency bin index f ∈ {1, 2, · · · , F}. Let
y ∈ R2TF be the vector representing every real part and imagi-
nary part of the STFT representation of the received signal.

Assumption 1. We assume a multivariate Gaussian model
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where its conditional mean µ̂θ(y) and covariance Σ̂ϕ(y) are
learned from a dataset by a conditional density model fψ.

Model 1. The conditional density model fψ is defined by µ̂θ(y)

vec
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where Σ̂ϕ(y) = L̂ϕ(y)L̂
T
ϕ(y) is the conditional covariance.

Remark 1. fϕ is a temporary submodel that can be removed at
inference time.

Question 3. How to train the augmented model fψ?
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Figure 1: We augment an SE model fθ with a temporary submodel fϕ to esti-
mate heteroscedastic uncertainty during training.

Assumption 2. Given a dataset {xn, yn}Nn=1 containing pairs of
target clean signal xn and received noisy signal yn, the like-
lihood of the joint probability distribution is assumed to be
p(x1, x2, · · · , xN |y1, y2, · · · , yN ;ψ) =

∏N
n=1 p

(
xn|yn;ψ

)
.

3 Multivariate Gaussian NLL

The problem of maximum likelihood is equivalent to minimizing
the empirical risk using the multivariate Gaussian NLL loss

ℓFull
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+ log det Σ̂ϕ(y). (3)

The number of elements in Σ̂ϕ(y) is 4T 2F 2, leading to exceed-
ingly high training complexity.
Question 4. How can we reduce the complexity and make the
maximum likelihood tractable?

3.1 Homoscedastic uncertainty: An MSE loss

If the covariance Σ̂ϕ(y) is assumed to be a scalar matrix Σ̂ϕ(y) =
cI where c is a scalar constant and I is an identity matrix, then
we actually assume the uncertainty is homoscedastic.
• The log-determinant term in (3) becomes a constant.
• The affinely transformed squared error reduces to an MSE.
• In this case, minimizing the Gaussian NLL is equivalent to the

empirical risk minimization using an MSE loss

ℓMSE
x,y (θ) = ∥x− µ̂θ(y)∥22. (4)

• The submodel fϕ is not needed for an MSE loss so the opti-
mization is performed only on θ.

3.2 Heteroscedastic uncertainty: A diagonal case

If every random variable in the random vector drawn from p(x|y)
is assumed to be uncorrelated with the others, then the covariance
reduces to a diagonal matrix.
• The Gaussian NLL ignores uncertainties across different T-F

bins and between real and imaginary parts, leading to
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• The number of output units of the submodel fϕ is 2TF .
• The real and imaginary parts have their own variance.
• This is a weaker assumption compared to the circularly sym-

metric complex Gaussian assumption used by [1].
Question 5. Can we further weaken the assumption?

3.3 Heteroscedastic uncertainty: A block diagonal case

We relax the uncorrelated assumption imposed between every
real and imaginary part to take more uncertainty into account.
• The conditional covariance becomes a block diagonal matrix

consisting of 2-by-2 blocks, giving the Gaussian NLL loss
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• The number of output units of the submodel fϕ is 3TF .
• The inference-time complexity of the SE model fθ remains

the same as using an MSE loss.

4 On mitigating undersampling

The expected first-order derivative of ℓDigonal
x,y w.r.t. µ̂t,fr;θ is
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• A larger variance makes the model fθ harder to converge to a
clean component.

• This undersampling issue was pointed out in a recent work [2],
in which they proposed the β-NLL to mitigate undersampling.

Question 6. Can we generalize β-NLL to the multivariate case?

4.1 Covariance regularization

Let δ > 0 be the lower bound of the eigenvalues of the Cholesy
factor of the covariance matrix. The output of fϕ is modified by[
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]
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}
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for all m where L̂δϕ(y) is now the regularized output of fϕ.

4.2 Uncertainty weighting

To extend the β-NLL to a multivariate Gaussian NLL, we propose
an uncertainty weighting approach, which assigns a larger weight
for a loss component according to the minimum eigenvalue of the
covariance matrix, leading to

ℓβ-Block
x,y (ψ) =

∑
t,f
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[
Σ̂t,fϕ (y)

]β
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where λmin [·] gives the minimum eigenvalue which is treated as
a constant. When β = 0, ℓβ-Block

x,y (ψ) reduces to the original
ℓBlock
x,y (ψ). We pick β = 0.5.

5 Experiments

The DNS dataset [3] is used. We adopt the GCRN [4] as fθ for
investigation. fϕ is an additional decoder that takes the output of
the in-between LSTM of the GCRN as input.
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Figure 2: The quantile-quantile (Q-Q) plots suggest that the predictive Gaus-
sian distributions reasonably capture the populations of the clean speech.

δ β WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5

Unprocessed n/a 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01

NLL ℓBlock

0.0001 0 1.07 1.08 1.11 59.4 66.5 72.0 -6.46 -4.20 -2.82
0.001 0 1.53 1.80 2.19 82.6 89.1 93.3 7.08 10.08 13.01
0.01 0 1.61 1.92 2.33 83.9 90.1 94.0 7.82 10.73 13.51
0.001 0.5 1.73 2.08 2.49 86.0 91.4 94.7 9.71 12.62 15.41
0.005 0.5 1.75 2.11 2.52 86.4 91.6 94.8 10.09 13.05 15.88
0.01 0.5 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99
0.05 0.5 1.72 2.08 2.49 86.3 91.6 94.8 10.12 13.09 15.86

Figure 3: The methods of covariance regularization and uncertainty weight-
ing effectively improve the perceptual metric performance of the NLL loss.

WB-PESQ STOI (%) SI-SDR (dB) NORESQA-MOS
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5

Unprocessed 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01 2.32 2.36 2.45

MAE 1.50 1.76 2.09 84.4 90.4 93.9 9.83 12.63 15.02 2.77 3.27 3.65
MSE 1.63 1.94 2.29 85.1 90.6 94.0 10.24 13.21 15.97 2.86 3.52 4.02

SI-SDR 1.71 2.04 2.42 86.5 91.5 94.6 10.96 13.92 16.80 3.05 3.65 4.20

NLL ℓDiagonal 1.74 2.08 2.48 86.2 91.3 94.6 9.83 12.55 15.01 3.14 3.77 4.25
NLL ℓBlock 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99 3.23 3.89 4.35

Figure 4: The NLL using a block diagonal covariance with suitable δ and β
outperforms the MAE, MSE, and SI-SDR in terms of different metrics [5].

WB-PESQ STOI (%) SI-SDR (dB)
SNR (dB) -5 0 5 -5 0 5 -5 0 5

Unprocessed 1.11 1.15 1.24 69.5 77.8 85.2 -5.00 0.01 5.01
Best single-task 1.75 2.10 2.50 86.7 91.8 94.9 10.22 13.15 15.99

Hybrid 1.77 2.14 2.53 86.9 91.9 94.9 10.62 13.58 16.30

Figure 5: Evaluation of ℓHybrid = αℓβ-Block + (1− α)ℓSI-SDR where α = 0.99.

References
[1] H. Fang, T. Peer, S. Wermter, and T. Gerkmann, “Integrating statistical uncertainty into

neural network-based speech enhancement,” in ICASSP. IEEE, 2022, pp. 386–390.
[2] M. Seitzer, A. Tavakoli, D. Antic, and G. Martius, “On the pitfalls of heteroscedastic un-

certainty estimation with probabilistic neural networks,” in ICLR, 2021.
[3] C. K. Reddy, H. Dubey, K. Koishida, A. Nair, V. Gopal, R. Cutler, S. Braun, H. Gamper,

R. Aichner, and S. Srinivasan, “INTERSPEECH 2021 deep noise suppression challenge,”
in Interspeech, 2021, pp. 2796–2800.

[4] K. Tan and D. Wang, “Learning complex spectral mapping with gated convolutional re-
current networks for monaural speech enhancement,” IEEE/ACM TASLP, 2019.

[5] P. Manocha and A. Kumar, “Speech quality assessment through MOS using non-matching
references,” in Interspeech, 2022, pp. 654–658.


	The conventional learning paradigm in SE
	Probabilistic models and assumptions
	Multivariate Gaussian NLL
	Homoscedastic uncertainty: An MSE loss
	Heteroscedastic uncertainty: A diagonal case
	Heteroscedastic uncertainty: A block diagonal case

	On mitigating undersampling
	Covariance regularization
	Uncertainty weighting

	Experiments

